I. (25 pts): Consider the common-emitter configuration shown on the circuit diagram below used to amplify the source signal V_s with source resistance R_s.

The β of the transistor is 100. The DC analysis has been carried out and the following values were found:

$I_E = 0.97 \text{ mA}$ and $I_C = 0.96 \text{ mA}$.

\[g_m = \frac{I_C}{V_T} \]

\[V_T = 26 \text{ mV} \]

\[I_E = (\beta + 1) I_B \]

\[I_C = \beta I_B \]

\[R_H = \frac{V_T}{I_B} \]

\[R_H = \frac{\beta}{g_m} \]
For all questions below, neglect the base resistance r_x and the resistance r_o in the hybrid-π model of the BJT and assume that the internal capacitances of the BJT are equal to $C_\pi = 2$ pF and $C_\mu = 10$ pF.

- Draw the small AC signal equivalent circuit of this amplifier configuration using the hybrid-π model and including all capacitances, i.e., the coupling and bypassing capacitors plus internal capacitances as well as the effect of r_x.
• Using the Gray-Searle technique, give an analytical expression of the low frequency pole due to the bypassing capacitor C_E.

• Calculate the numerical value of the low frequency pole found above in rad/s using the values of the resistors on the circuit diagram of the amplifier and the small signal parameters of the hybrid-π model.
II. (25 pts): Consider the amplifier below.

- (5 pts) What type of amplifier is it? (circle your answer) Common Emitter, Common Base, or Common Collector?
- (15 pts) Draw the small AC equivalent circuit of the amplifier. Neglect the effects of the base resistance r_s and the output resistance r_0 in the circuit diagram.
- (20 pts) Use the low frequency Gray-Searles procedure to determine the angular frequency ω_2 of the pole associated to the coupling capacitor C_2 shown in the circuit diagram. Since no numerical values are given for the components of the circuit, all you need to derive is an analytical expression for ω_2.