on when

 $V_{\text {IN }}$ is lowon when $V_{\text {IN }}$ is high
uits that makes 3-12, different ct their logical I current flows yate; this seems behavior. It is s gate indicates

IOS. A k-input
1put is LOW, the ecorresponding the correspond-

Figure 3-14 Switch model for CMOS 2-input NAND gate: (a) both inputs LOW: (b) one input HIGH; (c) both inputs HIGH.
ing "off" n-channel transistor. If both inputs are HIGH, the path to V_{DD} is blocked, and Z has a low-impedance connection to ground. Figure 3-14 shows the switch model for the NAND gate's operation.

Figure 3-15 shows a CMOS NOR gate. If both inputs are LOW, then the output \mathbf{Z} has a low-impedance connection to V_{DD} through the "on" p-channel transistors, and the path to ground is blocked by the "off" n-channel transistors. If either input is HIGH, the path to V_{DD} is blocked, and Z has a low-impedance connection to ground.
(a)
(b)

A	B	$Q 1$	$Q 2$	$Q 3$	$Q 4$	Z
L	L	off	on	off	on	H
L	H	off	on	on	off	L
H	L	on	off	off	on	L
H	H	on	off	on	off	L

Figure 3-15 CMOS 2-input NOR gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.
(c)

