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The ionic conductivity (

 

σ ionic ) of amorphous electrolytes 
(glasses) is related here to the mechanical nature of the host 
network and, accordingly, displays three distinct elastic regimes 
common to glass networks, namely, a flexible, an intermediate and 
a stressed-rigid phase. It is shown that the onset of conduction at 
higher modifying-ion content results from the breakdown of 
rigidity as well as from the increase in free-carrier density.  A 
derivation of 

 

σ ionic  is presented here, which incorporates network 
rigidity explicitly; and the results are compared quantitatively with 
experimental data. 
 
 
1. Introduction 
 
Gaining a better understanding of electrical transport in fast ionic 

conductors such as amorphous electrolytes is a basic scientific challenge, 
with potential important technological applications. Oxide or chalcogenide 
based amorphous materials can display high electrical conductivities, and the 
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materials have found application in solid state batteries, sensors, and non-
volatile memory devices [1]. In order to tune their physical properties for 
applications, one has to better understand how chemistry via molecular 
structure, controls conductivity and the underlying conduction mechanisms. 

The conductivity can be expressed in terms of the free carrier 
density nL and the carrier mobility  by:  = Ze nL with Ze the charge 
of the conducting ion. It seems that theoretical approaches to ionic 
conduction in glasses have concentrated either on the dominant role of the 
free carrier density  nL [2] or  of the carrier mobility [3, 4]. The added 
ionic species are network modifiers and can substantially change the 
mechanical nature of the host network. Therefore, the two effects must be 
considered together. 

It is generally believed [5-8] that, in solid electrolyte glasses, 
physical processes associated with ion transport and with network structure 
are decoupled. This view is based on the enormously disparate time scales 
involved in charge relaxation vs structural rearrangement relaxation. For 
example, the ratio (Rτ) of structural (τs ~ 102 sec) to conductivity (τσ ~ 10-10 
sec) relaxation times near the glass transition temperature (Tg) is of the order 
of  Rτ ~1012 .  On the other hand, in polymer electrolytes such as  
polyalkylene oxides, Rτ values of nearly 1 or even less than 1 have been 
observed [8, 9].  In these coupled systems, according to [5-8], clearly a 
reverse circumstance must prevail, viz., ion-hopping and network structure 
relaxation must be closely tied to each other.  

However, recently Ingram et al. [10] have argued that the dichotomy 
between coupled  charge transport vs structural relaxation behavior and  
apparently decoupled behavior is not fundamental. In fact they are not even 
very different quantitatively when the measured quantities are expressed in 
terms of activation energies EA (A= s, σ)  and activation volumes VA. 
Experimentally, Ingram et al present new data from conductivity and 
pressure-DSC experiments on the decoupled glassy electrolyte system, 
(AgI)50(Ag2O)25(MoO3)25 (Ag-iodomolybdate),. By an analysis, which we 
will not go into here, they are able to extract the four activation numbers, 
E(s,σ) and V(s,σ). They also present the corresponding values for some 
coupled polymeric electrolytes and show that the activation ratios just near 
Tg,, namely, 
 

   MA = EA/ VA                                             (1) 
 
are of the same order for all the systems considered. For the polymers, MP

σ  
and MP

s were esentially independent of temperature so that the E vs V plots 
are linear. For the glasses, the values of MG

σ and MG
s both lie between 7 to 8 

MPa. For each of the polymers, MP
σ

  and MP
s are also nearly  equal and, 

though the MP values differ from polymer to polymer, they are all of the 
same order as MG; despite their 'bare' Rτ values being many orders of 
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magnitude smaller – of order unity – than of order 1012 for the glass. These 
disparate ratios are due to the fact that the τA's are exponential functions of 
EA and VA. 

Ingram et al. [10] call M a local modulus, a generic and not 
atomically specific measure of the stresses involved in s and σ dynamical 
processes. For Ag-iodomolybdate M is about one third of the bulk modulus, 
which is consistent with the picture that a smaller number of  nearby atoms 
is needed in response to a local change than for a distortion which extends 
throughout the bulk. (It may be sometimes conceptually helpful to think of 
M as a local stress, which it is dimensionally.) 

Additional support for the view proposed in [10] derives from the 
relative magnitutes of estimated atomic displacements l involved in s and σ 
processes: If we put V ∼ l3, then the ratio Vs/Vσ, which is roughly 64 in Ag-
iodomolybdate, means that  lG

σ = ¼ lG
s - which is not unreasonable. 

Furthermore, their Table 1 gives the value  Vs = 174 cm3/mol, and this 
translates via Avogrado's number to 0.29 nm3/ molecule, or lG

s  = 0.66nm 
(6.6A) and lG

σ = 0.16nm (1.6A), both of which are also plausible values. 
With ionic conduction dependent on the mechanical nature of the 

glass network, we should expect it to show the now generally recognized 
elastic phases: flexible, IP and stressed rigid. Threshold behaviour was seen 
earlier in fast ionic conductors, but the connection with rigidity transitions 
was not recognized. The boundaries of the IP, expressed in terms of network 
mean coordination numbers )1(cr  and )2(cr have been characterized from 
experiments for many different systems [11-16], numerical calculations [17, 
18], cluster analysis [19, 20] and energy adaptation [21] and identified as 
being  a rigidity transition  at )1(cr  and a stress transition  at )2(cr > )1(cr . In 
random networks both transitions coalesce into a single threshold near 

4.2=r . Maxwell constraint counting [22] predicts the vanishing of the 
number of floppy modes [23, 24], i.e. the low energy modes that serve to 
locally deform the network vanish at the single threshold. Up to now, 
signatures of the two transitions have been detected in calorimetric [11-15] 
and in vibrational spectroscopic probes [16]. 

In the remainder of this chapter a theory of ionic conductivity is 
presented in Section 2 which is based explicitly on features of the different 
elastic phases. The calculations are in reasonable accord with experimental 
results given in Section 3. 

 
 

2. A rigidity based theory for ionic conduction 
 
A model of ionic conduction is combined with the size increasing 

cluster model approach (SICA) to rigidity transitions, and as in ref.[19], this 
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allows us to study in detail the effect of elastic phases on  ion conduction.A 
model of ionic conduction is combined with the size increasing cluster 
model approach (SICA) to rigidity transitions, and as in ref.[19], this allows 
us to study in detail the effect of the phase structure. 

 In stressed rigid electrolytes, the combination of a weak number of 
free carriers and a large strain energy for migration leads to very low 
conductivities whose order of magnitude is given by the Coulombic 
interaction between the carrier and its anionic site. Conductivity builds up in 
the IP where additional hopping processes appear. These new hopping 
processes are found on flexible parts (ion rich) of the network and do not 
exist in the stressed rigid phase. Finally, the lowering of the strain energy 
due to the presence of floppy modes that allow the local deformation of the 
network, promotes ease of conduction in the flexible phase.  
 

2.1 Construction 
 
Agglomeration of select local structures ( tetrahedral, pyramids, 

atom pairs, etc ) to produce larger molecular clusters ( rings, edge-sharing 
tetrahedral units, chains, etc)  emulating  medium range order characteristic 
of real network glasses has  proved to be a useful approach to understanding 
their flexibility and rigidity behavior. The size increasing cluster 
approximation (SICA), has for example, been useful in elucidating what 
aspects of local structures, such as corner-sharing and edge sharing  
 

 
 

Fig. 1. A typical network of the form (1-x)SiX2-xM2X showing 
covalent Si-X and ionic M-X bonds. Here M = alkali atom, and X 
= O,S or Se.  Note that this network contains edge-sharing 
tetrahedra that contribute to the  width of the intermediate phase. 
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tetrahedral units,  could be relevant in contributing to the onset of rigidity 
and stress phase transitions observed in binary GexSe1-x glasses.  Here we use 
SICA  [19, 20] to compute the probability of clusters in the three phases for 
glasses of the form (1-x)SiX2-xM2X with (X=O,S,Se and M=Li,Na,K,...) 
which display a mean-field rigidity transition at x=xc=0.20 [25]. These 
glasses serve as basic system for a number of fast ionic conductors (Fig. 1) 
and have a rather well-defined short-range order extracted from NMR 
experiments. The network consists indeed of SiX4/2 and SiX5/2M tetrahedra 
(respectively termed as Q4 and Q3 in NMR notation [26, 27]) in the present 
concentration range of interest [x=0, x=0.33]. 

Using SICA, a network of N tetrahedra Q4 and Q3 with respective 
probabilities (1-p) and p=2x/(1-x) is considered at a basic step l=1. Note that 
a Q4 unit is stressed rigid (nc=3.67 per atom) whereas Q3 is flexible (nc=2.56 
per atom). Starting from this short range order (the SICA building blocks), 
one can construct all possible structural arrangements to obtain clusters 
containing two Qi's (step l=2), three Qi's (l=3), etc. The various possible 
connections (Q4-Q4, Q4-Q3, Q3-Q3) define energy gains accordingly to their 
mechanical nature and their probabilities can be computed. Details of the 
method and application can be found elsewhere in this book. This allows to 
compute the floppy mode density f(l) of the network which, in the case of 
doublet pairs Qj-Qk (i.e. l=2) with probability pjk , is given by: 

 

∑
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where nc(jk) and Njk are respectively the number of constraints and the number 
of atoms of a Qj-Qk pair. An intermediate phase is obtained if self-
organization is achieved, i.e. if with growing connectivity all pairs with 
stress outside of cyclic (ring) structures can be avoided. In the present 
system, the only stressed rigid pair is the corner-sharing Q4-Q4 one (Fig. 2). 
In practice, one starts from a flexible network which is found at high 
modifier concentration x. If one decreases the modifier content, one will 
obtain more and more Q4 species with still f(2)>0. At a certain point in 
composition x=xr, there will be enough of these structural units to ensure 
rigidity and allow f(2) to vanish. Stress is then only possible on Q4-Q4 pairs 
that form rings, i.e. edge-sharing structures which are weakly stressed rigid 
(nc=3.25 per atom) and isostatically rigid (nc=3.0 per atom) in the case of an 
infinite edge-sharing tetrahedral chain. With this selection rule in the cluster 
construction, one can still reduce the concentration x beyond the rigidity 
transition and obtain a network that is almost stress-free. But the selection 
rule holds only down to a certain point in composition x=xs below which 
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corner-sharing Q4-Q4 pairs cannot be avoided anymore. Stress is then able to 
percolate across the network.  The IP is defined between a lower modifier 
concentration xs and an upper value xr ;and its width is given by x= xr-xs. In 
this approach, the width is found to depend mostly on the fraction of ES 
tetrahedra. Results of such an application to the present system are given 
elsewhere 

Our theory of ionic conduction builds on the Anderson-Stuart model 
[28] which separates the activation energy for ionic conduction into an 
electrostatic and migration part Ec and Em that respectively contribute to the 
free carrier density nL and the carrier mobility , respectively. In this mod  
the low temperature Arrhenius behaviour of the conductivity [29, 30] is 
written as: 

 
TkEETkE BmCBA e

T
e

T
T /)(0/0)( +−− ==

σσ
σ    (3) 

 
In the following, we concentrate our efforts on the energies Ec and 

Em which can be directly related to the statistics of clusters and the 
enumeration of constraints. Next, one evaluates the free carrier rate nL. On 
each Qj-Qk pair, there is a probability to find n=0, 1 or 2 vacancies (see Fig. 
2) which will contribute to the free carrier concentration. A mean Coulombic 
energy can be computed over all possible pairs with probability pjk, that lead 
to the free carrier rate: 
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where Ec is the Coulombic energy to extract the cation M from the anionic 
site X (X=0,S,Se) and acts as a free parameter for the theory [31]. Z 
normalizes the free carrier concentration in order to have nL

(2)=0 at T=0 and 
nL

(2)=2x, the maximum possible carrier concentration, at  infinite 
temperature As the probability pjk of pairs will depend on the nature of the 
elastic phase,  should depend also be different in the three phases (flexible, 
intermediate, stressed). In the concentration range of interest, one possible 
environment for the M+ carriers is identified, the Q3 unit corresponding to 
singly occupied negative sites (e.g. a non-bridging oxygen, NBO) whose 
number changes with x according to the structural change of the network 
[32].  

Once a carrier is free to move, it is supposed to hop between two 
vacant sites and the general form for hopping rates is usually given by 
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Jij=ijexp[-Em/kBT] with ij an attempt frequency [33] depending on the 
local environment of the hopping cation which is constant here as only one 
type of Qn species (n=3) is involved in the ionic conduction. The strain or 
migration energy Em for the hop is roughly the energy required to locally 
deform the network between the cation and a vacant site [34]. It should 
therefore depend on the floppy mode energy and does not depend on the 
process (i,j). This amounts to neglect of the Coulombic repulsion from 
vacant sites. Note that, for the stressed rigid phase, there are only few 
hopping sites involved as the network is made only of stressed rigid Q4-Q4 
and isostatically rigid Q4-Q3 pairs.  

 

 
 
Fig. 2. Q4, Q3 cluster construction in a typical SiX2-M2X glassy 
system leading to various corner- (CS) and edge-sharing (ES)     
Qj-Qj pairs which exist only in the elastic phases listed on the right   
                  and  contribute  to  the free carrier density.  
 
 
Floppy modes start to proliferate in the flexible phase at x>xr when 

f(2) (equation (2)) becomes non-zero. This allows an easier local deformation 
of the network thus increasing the hopping rates and should reduce the 
energy required to create doorways between two vacant sites. We write 
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therefore the strain energy as: Em
flex=Em

stress-f(2) where  is a typical floppy 
mode energy given by experiment [35]. In the flexible phase, Em is reduced 
by a quantity f(2) when compared to the stressed rigid phase. One is then 
able to write a conductivity of the form: 

 
mE

LL enn βµσ −== )2()2()2(    (6) 
 
 
2.2 Results 
 
Results of the rigidity model for σ are displayed in Fig. 3 for various 

parameters Ec. They show that the underlying mechanical nature of the host 
networks strongly affects the ion transport. In the stressed rigid phase, the 
stress energy is high and the number of hopping possibilities is low (only 
between CS and ES Q4-Q3 pairs), combined with a low free carrier density. 
The conductivity is therefore found to be low and to depend only weakly on 
the modifier concentration.  The order of magnitude of  is determined by 
the value of Ec, i.e. the interaction energy between the cation and its anionic 
site. 

In the intermediate phase, new cation pairs (and thus hopping 
possibilities, Fig. 2) appear and lead to a mild increase of .  The first order 
stress transition at xr  that usually separates the stressed rigid phase and the 
IP [17, 19, 20, 36] is seen as a break in the slope of  σ vs x. The jump seen at 
the rigidity transition composition x=xs  depends on the parameter Ec (or 
inverse temperature at fixed Ec, because of the Boltzmann factor, see equ. 
(2)), whereas the location of the stress transition itself (and the 
corresponding width of the IP) will only depend on the structure via an 
allowed ES fraction [19, 20]. Large values for the Coulombic energy Ec will 
lead to large jumps in conductivity at the stress transition. One expects 
therefore to observe the first order stress transition rather in electrolytes 
involving heavy cations (such as Ag or K) than in electrolytes using more 
lighter ones (Li). Similarly, one expects to see the jump increase with 
decreasing temperature.  

Conductivity displays a second threshold at the rigidity transition 
x=xr when floppy modes start to proliferate and decrease the migration 
energy barrier. It clearly suggests that flexibility promotes conductivity. The 
latter can indeed increase when available degrees of freedom appear that 
facilitate local deformations of the network and the creation of pathways for 
conduction. The present results furthermore suggest that the increase of the 
number of possible hopping processes (in the IP) contribute only weakly to 
the dramatic increase of  that mostly arises from the fact that in the flexible 

phase 0)2( ≠f . 
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3. Experimental  
 
How do experimental results compare with the theory of ionic 

conduction based on flexibility/rigidity of networks? Fairly well, as we will 
illustrate next for systems where complete data on conductivity as a function 
of glass composition is available such as the alkali-silicates and -germanates, 
and silver phosphates. In each case we find evidence for intermediate phases 
with conductivity increasing precipitously once networks become flexible as 
predicted by the theory. 

 

 
Fig. 3. Conductivity in a (1-x)SiX2-xM2X glassy system as a 
function of the modifier concentration for various Coulombic 
energies Ec. Here Em

stress=0 and ∆=0.05eV. The location of the 
thresholds xs and xr  and  the  width  of  the  IP  are fixed by an ES  
                            tetrahedral fraction of 34%. 

 
 

3.1 Sample synthesis 
 

Glass samples were synthesized by reacting precursors in a dry 
ambient environment. Melts were then poured in special troughs resulting in 
platelets of about 10 mm diameter and 2 mm thickness. Platelets were 
thermally relaxed by cycling through Tg. Samples were polished, and the Pt 
electrodes deposited. Electrical conductivity of glasses is measured by a two-
electrode impedance spectroscopy setup. Samples are hold by a weak spring 
between two platinum electrodes, which measure current passing through a 
sample while a known voltage is applied. The whole apparatus is placed in a 
horizontal tubular furnace, the temperature of which is raised to about 
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Tg + 50°C at a rate of  2°C/min. The sample temperature is measured by a 
Pt/Pt-Rh(10%) thermocouple placed near the test specimen. Complex 
impedance Z=Z’+iZ’’ of a specimen is measured by a Solartron SI 1260 
impedance analyzer controlled by the LabView software. Frequency was 
varied typically is in 1 MHz < υ < 1 Hz range, and was scanned over 19 
points for each measurement. All data are acquired automatically at two-
minute intervals. The electrical resistance Rdc is read at the high-frequency 
intersection of the polarisation semi-circle with the x-axis in the complex 
diagram (Cole-Cole plot). The static conductivity, dc  is obtained from 
sample resistance Rdc, its thickness t and surface area S covered by platinum.  
 
 

3.2 Alkali and alkaline earth silicates 
 
We review here data on the systems (1-x)SiO2-xM2O with M=Li, Na, 

K and (1-x)SiO2-xMO with M=Ca,Ba. Although these glasses have moderate 
conductivities ( ~10-4 -1.cm-1) at room temperature, they have received 
considerable attention both experimentally and in simulations because of 
their applications in domestic glasses and their abundance in magmas [37]. 
We should stress that alkaline earth silicate glasses have generally higher 
liquidus temperature as well as glass temperature (Tg) than alkali silicates 
[38]. We measured electrical conductivity of the two systems xBaO(1-
x)SiO2 and xCaO-(1-x)SiO2 in their glass-forming range i.e. 25<x<37 and  
41<x<55 mol% of alkaline earth oxide respectively. The data for alkali 
silicates are taken from the literature. 

The behaviour of  with alkali and alkaline earth composition is 
represented in figs. 4 and 5. The trend with composition obviously exhibits 
two distinct conduction regimes; a first one at low modifier concentration 
where the conductivity is negligibly small, and a second one where  
displays an exponential growth or power-law behaviour. For that reason,  
is sometimes plotted on a log-scale. From Figs 4 and 5, it becomes clear that 

 
Table 1. Predicted threshold compositions xc in alkali- and 

alkaline-earth silicates estimated from global Maxwell counting. 
 

System Threshold composition xc Reference 
(1-x)SiO2-xLi2O 
(1-x)SiO2-xNa2O 
(1-x)SiO2-xK2O 
(1-x)SiO2-xCaO 
(1-x)SiO2-xBaO 

0.25 
0.20 
0.17 
0.50 
0.29 

[40] 
[19, 20] 

[41] 
[42] 
[43] 
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Fig.4. Dc conductivity in glassy alkali silicates as a function of 
modifier concentration (M=Li, Na and K). The vertical broken 
lines  correspond  to   the  Maxwell rigidity threshold. Lithium and  
     sodium: data from [44, 45].  Potassium: data from [44-48].  
 

the onset of ionic conductivity in the second compositional interval 
is related with the breakdown of the stressed-rigid network. In 
calcium silicates, the almost constant value of σ in the low calcium 
region and sudden increase for x > 0.47 has also been obtained in 
simulations and experiments for the molten state [39], suggesting 
that molten and glassy states behave similarly 
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            Enumeration of bond-stretching and bond-bending constraints within 
the Maxwell approach leads to rigidity thresholds (Table I) that are quite 
close to the observed thresholds in conductivity, i.e., the composition when a 
substantial increase sets in.  

In alkali-and alkaline-earth-silicate systems, conductivity thresholds 
are found to shift with the size of the modifier cation, and these shifts 
correlate well with the anticipated shift of the flexibility/rigidity transition 
(Table I). This links ionic conductivity to glass network elasticity and 
structure. In this picture, the major consequence is that carrier concentration 
does not dominate the conductivity, as widely reported but an increase of 
network flexibility does.  

In fact, the interpretation of the dc conductivity with composition 
derives from our proposed model described in the previous section. When x 
= xr, the number of floppy modes vanishes and the network undergoes a 
rigid-to-flexible transition. For x < xr , the system is stressed rigid, i.e. it 
contains more constraints than degrees of freedom per atom. This means that 
the mobility of the modifier cation is weak. The latter has to then overcome a 
strong mechanical-deformation energy to create doorways in order to move 
from one vacant site to another. This deformation energy vanish in an ideal  

 

 
 
Fig 5. Dc conductivity in glassy alkaline earth silicates (1-x)SiO2-
xMO as a function of modifier concentration (M=Ca  or Ba). The 
vertical broken lines correspond to the Maxwell rigidity threshold. 
Note that in calcium-silicates the rigidity threshold shifts from 
xc=50% to lower concentrations of ~45%.The shift  correlates 
well with vibrational signature of the rigidity transition from 
Raman scattering [42, 43]. For Ba-silicates, the rigidity transition 
is predicted near   xc = 29% (Table 1) and  is  also  observed    
close    to    that    value    in    conductivity    and   vibrational  
                               spectroscopy (see Fig.7c) 
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flexible network [23, 24] when only bond-bending and bond-stretching 
forces are considered at x>xc. The same behaviour is obtained [49] for the. 
related elastic constants C11 and  C44. Therefore, percolation of flexibility 
produces the percolation of the cation mobility resulting in a substantial 
increase of the mobility thus of the conductivity. 

In solid electrolytes such as the present alkali and alkaline earth 
silicates, it is often believed that it is the carrier concentration that dominates 
the conductivity [50]. In the strong electrolyte model, the cation electrostatic 
Coulombic energy barrier has to be overcome to ensure conduction. On the 
other hand, in the weak electrolyte model a dissociation energy is needed to 
create the mobile carrier [51]. These two pictures remain of course valid as 
long as the sizes of the cations are weak compared to the interstices of the 
glass network.    

Connection with the popular conductivity channel picture can also 
be made [52,53]. This picture has received some support from Molecular 
Dynamics simulations in the sodium silicates. In these glasses, the rigid to 
flexible transition occurs (Table I) at the alkali concentration xr = 0.20, a 
concentration that is very close to the reported threshold concentration 
separating intrachannel cation hopping from network hopping [54]. The 
latter needs a strong mechanical deformation which is only possible in a 
flexible network, whereas the latter involves only a weak mechanical 
deformation of the network, since the motion occurs only in macroscopic 
holes of the network. 

Signature for the onset of ionic conduction induced by flexibility 
receives also support from the study of the conductivity in molten calcium 
silicates. In the liquid phase, an increase in conductivity for x>xc is still 
observed but with values that are substantially higher compared to the glass. 
In this case,  can be fitted with a Vogel-Fulcher-Tamman (VFT) law: of 
the form: 

 





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It appears that the pseudo-activation energy ∆ is constant for the two 

values in the flexible  region (∆ = 2733.0 and 2740.7 K for, respectively, x = 
0.44 and x = 0.5), while it increases for the composition x = 0.53 (∆ = 3008 
K). Also, the VFT temperature T0 at which the diffusion constant (and the 
underlying relaxation time towards thermal equilibrium) diverges, is very 

 
 

47 



close to the Tg of the corresponding glass, suggesting that the glass transition 
is optimal. 

Unfortunately, because of the high value of the glass transition 
temperature in theses alkali and alkaline earth silicates, the calorimetric 
probe (temperature modulated differential scanning calorimetry (MDSC)) of 
the intermediate phase and the stress and rigidity transitions cannot be used 
at present. An alternative signature is given from vibrational thresholds 
obtained in Raman measurements. For the (1-x)SiO2-xCaO system, the 
frequency ν and the linewidth  Γ of the stressed rigid SiO4/2 (Q4 unit) can be 
tracked with the calcium composition [42, 55]. The corresponding line (A1 
stretching mode) exhibits a change of regime (Fig. 6) for the line frequency 
at the concentration x = 0.50, consistently with chalcogen analogs [56, 57]. 
On the other hand, the evolution of the linewidth Γ with x permits to follow 
the local environment of the Q4-unit. For x < 0.50, Γ remains constant, 
related to the absence of change in the coupling of this unit with the rest of 
the network. It is the coupling which makes possible the presence of rigid 
regions (through isostatic Q4-Q3 and stressed Q4-Q4 bondings), although the 
number of flexible Q2- and Q1-units is steadily increasing. Above the critical 
concentration x=0.50, the sharp drop of Γ clearly shows decoupling of the 
Q4-unit with respect to the network (Fig. 7), signifying decoupling of 
stressed rigid regions and thus percolation of flexibility. Similarly, one sees 
that at the composition where the barium conductivity sets in (x=29%, see 
Fig. 5), a pronounced drop in the stressed rigid Q4 population (or 
corresponding Raman intensity) can be observed (Fig. 6). These results 
clearly suggest that the stressed-rigid to flexible transition detected from 
vibrational spectroscopy correlates well with the conductivity threshold. Can 
intermediate phases be detected as well? Yes, as we will show next in 
calorimetric experiments using MDSC, which precisely probe boundaries of 
the IP.  

 
3.3 Alkali germanates 
 
Alkali germanates (1-x)GeO2-xM2O (M=Li,Na,K) are prototypical 

oxides, with physical properties varying anomalously with alkali oxide 
content. The molar volume of glasses show indeed a broad global minimum 
near e.g. 18% of sodium, which has been termed as the germanate anomaly 
[59]. Its origin is still actively debated [60-62]. 

We have investigated Sodium Germanate glasses (M=Na) and  some 
of the results appear in Fig.7. The observation of a reversibility window 
fixes the three elastic phases. We observe in fact (right axis) a deep 
reversibility window (RW) with abrupt edges in ΔHnr (x) for 14% < x <  
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Fig. 6 (a). A1 mode frequency ν (open circles) and linewidth Γ 
(filled circles) of the Q4 line as a function of Ca concentration x in 
(1-x)SiO2-xCaO glasses, (b) shows a part of the Raman lineshape 
where modes of relevant Q-species are identified at  x = 0.46; 850 
cm−1 (Q0-unit) and 950 cm−1 (Q2-unit) from [58], and (c) 
Integrated intensity of Raman  Qn modes in (1-x)SiO2-xBaO 
glasses. The vertical broken line corresponds to the rigidity 
transition estimated from Maxwell counting (Table I).Note that at 
x > 29%, Q2, Q3 species increase at the expense of Q4 species as  
                                    networks become flexible. 

 
 

49 



 < 19%. The conductivity measurements on sodium germanate glasses have 
also been reported by several groups [63] and do indeed reveal a precipitous 
increase once x > 20%, as will be discussed elsewhere.  
 

 
 

Fig 7. Compositional trends in ΔHnr of (Na2O)x(GeO2)1-x from          
m-DSC [61].Model calculations reveal Q3  species  to  increase  at  
  the  expense of Q4 species once x > 20%. See details in ref [61]. 

 
 

3.4 Silver phosphates 
 
Electrical conductivity of silver phosphates (AgI)x(AgPO3)1-x has 

been measured by several authors although a consensus on the data has been 
elusive. In one study [64] a percolative transition is reported near x = 0.3, 
while in another one conductivity is found to increase [65] more or less in 
steps. We showed that the variability of the data is likely due to water 
contamination. Our work was on specifically prepared dry samples [66, 67]. 
Our glass transition temperatures Tg(x) are at least 50° to 100°C higher than 
those reported hitherto [64, 65, 68] and  their physical properties display 
thresholds near x = 0.095 and x = 0.379. These findings show that traces of 
water in these glasses alter their physical behaviour profoundly and that 
properties of flexibility and rigidity of backbones commonplace in covalent 
systems [69-71], is a concept that extends to solid electrolyte glasses as well, 
and that fast ion-conduction is promoted qualitatively when glasses become  
flexible. 

In order to examine glass transitions and in particular to determine 
the reversibility window, Modulated-Differential Scanning Calorimetry 
(MDSC) experiments were performed on these glasses from TA 
Instrumments at a heating rate of 3°C/min and modulation rate of 1°C/min. 
The observed variations in Tg(x) and the non-reversing enthalpy, ∆Hnr(x), of 
present dry xAgI-(1-x)AgPO3 glasses are summarized in Figs. 8(a) and 8(b). 
Here x represents the mole fraction of AgI. We find Tg(x) to monotonically 
decrease as AgI content increases, but the ∆Hnr(x) term to vary 
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nonmonotonically displaying a rather striking global minimum (the 
reversibility window [70]) in the 9.5%< x<37.8% range. At higher x 
(>45%), the ∆Hnr(x) term decreases again as glasses depolymerize. 
Variations in room temperature electrical conductivity, σ(x), appear in Fig. 
8(c), and show increases in steps, one near 9.5% and another near 37.8%. 
For comparison, we have shown in Figs. 8(a) and 8(c) variations in Tg(x) and 
in σ(x) reported earlier [65]. The present findings on dry samples differ 
significantly from previous ones in the field. 

Room temperature conductivities of our dry glasses increase with x 
and display a change in regime near xc1 = 0.095 and near xc2 = 0.378. The 
increase of conductivity observed at x > xc2 can be described by a power-law 
variation: 
         σ (x ) = B (x – xc(2))μ                                         (8) 
 
with a value of  μ = 1.78  and of xc(2) = 0.378  as shown in Fig. 8c.  

The thermal, and electrical results presented above lead to the 
following interpretation. The reversibility window, 0.095 < x < 0.378, in 
analogy to the case of covalent glasses [69, 71], we identify with the 
Intermediate phase of the present solid electrolyte glasses. The base AgPO3 
glass is weakly stressed-rigid, and AgI  alloying steadily lowers the 
connectivity of the chain network as reflected in the reduction of Tg(x) and 
the emergence of the first sharp diffraction peak [72]  near 0.7 A-1 in neutron 
scattering experiments. 
From an electrical point of view, addition of the electrolyte salt AgI to the 
insulating base AgPO3 glass serves to provide Ag+ carriers, and to also 
elastically soften the base glass. At low x (< 0.095), Ag+ ions undergo 
localized displacements in backbones as suggested by Reverse Monte 
simulations [72], a view that is independently corroborated by intrinsically 
stressed-rigid character of these glasses in the present work. With increasing 
AgI, and particularly in the Intermediate Phase, backbones become stress-
free [71] and Ag+ displacements increase as do conductivities (Fig.8c). At 
higher x (> 0.378), backbones become elastically flexible and electrical 
conductivities increase precipitously as carriers freely diffuse [72] along 
percolative pathways. Thus, although carrier concentrations increase 
monotonically with x, the observed thresholds in σ(x) suggest that it is 
network rigidity (flexibility) that controls fast-ion conduction by suppressing 
(promoting) Ag+ ion migration. The kinks in room temperature 
conductivities (Fig.8c) near the two elastic phase boundaries (xc1, xc2), most 
likely, seem to be generic features of electrolyte glasses as they have been 
found in other glassy electrolytes as well such as the potassium germanate 
system. 

Inspection of the behavior of the conductivity with iodine 
composition shows also that (x) follows exactly the predicted behavior 
from the rigidity ionic model described previously, i.e. one has a constant 
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Fig 8. Variations in (a) Tg(x), (b) non-reversing enthalpy, (c) room 
temperature conductivities, σ(x) in dry(AgI)x(AgPO3)1-x glasses 
synthesized in the present work (black triangles) and those 
reported by Sidebottom  (purple circles)  [65].  At x > 55 %, Tg’s  
decrease to 65°C, a value characteristic of AgI glass (see Ref. [73]). 
 

and  low value for the conductivity  (10-5-1.cm-1) in the stressed rigid 
phase with a marked jump at the stress transition located at xc1=9.5%. In the 
intermediate phase,  displays then a non-linear dependence with x in the 
semi-log plot, similarly to what is obtained in Fig.  3. Finally, a power-law 
behavior is obtained in the flexible phase. One should also remark that if the 
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temperature is changed (data of Fig. 8 have been recorded at room 
temperature), the jump seen at xc1 decreases as anticipated from the ionic-
rigidity model (Fig. 3) and observed from experiments performed at three 
different temperatures (Fig. 9). Obviously, the jump of the first order stress 
transition is temperature dependent and decreases with increasing 
temperature. 

 
Fig 9. Variations in conductivities σ(x) in dry (AgI)x(AgPO3)1-x 

glasses for different temperatures. Note the jump of σ at the stress 
transition. 

 
4. Network Flexibility and Non-Arrhenius T-variation of  
    Conductivity  
 
Rigidity effects manifest in another well-known phenomenon 

observed in solid electrolytes, the non-Arrhenius behaviour with temperature 
[74-77]. In fact, there are limitations in the dc conductivity of several groups 
of glasses, especially superionic conducting glasses which display 
conductivities up to 10-1 -1.cm-1 at room temperature. These limitations 
appear when the temperature is increased and saturation effects onset that 
lead to the departure of Arrhenius behaviour in conductivity.  

 
4.1 Potassium silicates 
 
We have focused on one particular system which is the potassium 

silicate glass of the form (1-x)SiO2-xK2O. Details of the synthesis can be 
found in Ref. [41] and the description of the experimental setup for 
conductivity measurements have been given above. We have focused on 
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Fig 10:  a) Arrhenius plots of conductivity in (K2O)x(SiO2)1-x 
glasses in their virgin state, as a function of potassium oxide 
concentration x. The solid line corresponds to a low-temperature 
Arrhenius fit for the x=0.25 composition. The vertical lines 
indicate Tg at two compositions (0.05 and 0.25). b) Effect of 
sample annealing on conductivity of glass compositions at x = 0.05 
and 0.17. Conductivity of virgin glasses: x=0.05 (●) and x=0.17 
(▲) compared to that of the corresponding annealed glasses (○, Δ).  
 
 

 the temperature study of the conductivity for various potassium 
concentrations in the virgin (i.e. as-quenched) and annealed state ( Fig. 10a) 
shows the Arrhenius plots of the ionic conductivity for the different virgin 
potassium silicates. One can first observe that glasses at low potassium 
concentration (e.g., x =0.05) display an almost perfect Arrhenius behavior 
with respect to the temperature while those at high concentration exhibit a 
clear saturation manifested by a significant curvature at high temperatures 
that signals departure from Arrhenius behavior. 
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Fig. 10b highlights the fact that annealing removes the curvature and 
brings the conductivity in the glass to Arrhenius behavior even though the 
absolute value of conductivity decreases with respect to the virgin state. 
Such a This is a feature that has been observed by Ingram and co-workers 
[78] for oxysalt chalcogenides involving iodine anions and identified with 
the dynamic temperature dependent restructuring iodine sublattice. 
Densification was claimed to play the key role and it appears that this seems 
also the case in the present system as density changes with annealing are 
relatively small for compositions lying in the stressed rigid phase in the 
silica-rich compositional region.  

Fig. 11 shows for two virgin and two annealed potassium glasses 
(x=0.05 and 0.17) the apparent activation energy that is computed as the 
running slope between adjacent temperature conductivity data points. We 
note from the figure that in the case of the latter virgin glass, the difference 
in activation energy between the low and the high temperature side is about 
0.4 eV (0.7 eV at T=400 K and 0.3 eVat T=700 K). For comparison, the 
corresponding reported difference for the highest saturated silver 
superconducting chalcogenide was about 0.15 eV. Therefore, the effect of 
saturation does not appear to be restricted to chalcogenides [74]. On the 
other hand, both virgin and annealed (x=0.05) glasses display a more or less 
constant activation energy (respectively found as 1.04 and 0.93 eV). From 
the observations made on both figures, it becomes clear that a dramatic 
change in regime occurs in the composition interval 0.12< x<0.17. This 
change is also observable from the low-temperature activation energy 
difference between the annealed and virgin state EA=EA(annealed)-
EA(virgin) which displays a significant drop in the aforementioned 
compositional interval (Fig. 11). From this figure, one clearly observes that a 
critical alkali concentration xc =0.14 separates glasses with Arrhenius 
behaviour (AB) from those displaying non-AB. The annealing of the glasses 
leading to densification tends to reduce the saturation which suggests that 
densification with annealing may be responsible for the loss of non-
Arrhenius variation. With the observation of an intermediate phase in the 
compositional interval [0.145-10.65], an analysis from bond constraint 
theory can be performed to locate the mean-field rigidity transition. In 
silicates, such a transition occurs at the alkali concentration of x=0.20 when 
the cation size is small [19, 20]. Due to the potassium cation size (cation 
radius RK=1:33 A and RNa= 0.95 A [79]), one expects that a supplementary 
oxygen angular constraint is broken because the bridging bond angle Si-O-Si 
in the glass network is found to display wide excursions (135-155o) around a 
mean angle that is much larger [32] than in the sodium analog [80]. 
According to this enumeration, a rigid to floppy transition is predicted [41] 
at the concentration of xc=0.14, close to the observed threshold observed in 
Fig. 11(a). The study of the local structure of potassium silicate glasses 
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Fig. 11. (a) Low-temperature activation energy difference ∆EA 
(open circles) between the virgin and annealed samples [41], 
together with previous results obtained (filled circles [81]), as a 
function of potassium concentration x.. (b) Relative fraction of   
Q4-Q3 pairs (filled circles, from [82]) together with theoretical 
prediction of the probability of Q4-Q3 pairs(broken line)  
computed from SICA [19, 20]. The solid lines represent the 
probability of finding stressed rigid, isostatically rigid, and floppy 
clusters. The lower horizontal axis is scaled in atomic number of 
floppy modes f. The vertical dotted line corresponds to the mean-
field rigidity transition xc = 0.14 where f = 0. The right axis shows 
the   corresponding   intermediate    phase   from    heat    flow  
                            measurements [47, 48] 
 
 

obtained from NMR investigation provides a supplementary evidence [79] 
about the location of the rigid to floppy transition because constraint 
counting can be applied onto the observed Qn speciation to yield the 
probability of finding stressed rigid and floppy structures in the network 
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(Fig. 11(b)). Furthermore, we notice that a cluster composed of a Q4 and Q3 
tetrahedron (a ‘‘K2Si4O9-like’’ cluster) is optimallyconstrained (isostatically 
rigid, satisfying nc=3). The corresponding probability of finding the latter is 
found to be maximum around the same critical concentration of xc=0.14. 
Thus at this composition the network is mainly stress-free. For larger 
concentrations, size increasing cluster approximations (SICA) predict the 
growing emergence of floppy clusters such as Q3-Q3 pairs should appear. 
 
 

5. Conclusions 
 
 Compositional variation of ionic conductivity, σ(x), in alkali-, and 
alkaline-earth silicates and germanates, and the solid electrolyte glass 
(AgI)x(AgPO3)1-x  provide evidence of three regimes of behaviour with 
two distinct thresholds (xc1,xc2)). At low electrolyte additive concentration, x 
< xc1, conductivities are minuscule because the system is stressed-rigid, i.e. it 
contains more constraints than degrees of freedom per atom, and mobility of 
cations is very small. Cations have to overcome strong mechanical-
deformation energy to create doorways to hop from one anionic site to 
another. In the second regime, xc1 < x < xc2, conductivities increase as 
networks become stress-free and mobilities increase as elastic deformation 
energy decrease. In the third regime at high electrolyte additive 
concentrations, x > xc2, conductivities increase as a power-law. In this 
regime, the deformation energy vanishes in an ideal flexible network when 
only bond-bending and bond stretching forces are considered. These 
thresholds identified from calorimetric and vibrational behavior of these 
glasses are found to correlate well with those observed in ionic 
conductivities. A model of ionic conductivity based on flexibility and 
rigidity of solid electrolyte glassy networks is developed and it provides a 
good theoretical description of these observations.  These results 
demonstrate that ionic conductivities are closely correlated to network elastic 
behavior or network connectivity or network structure. 
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