BJT Fundamental relations for DC and AC Analysis
ECE 352 - Spring 2007

DC analysis

\[I_E = I_B + I_C \]
\[I_C = \alpha I_E = \beta I_B \]
\[I_E = (\beta + 1) I_B \]
\[\beta = \frac{\alpha}{1-\alpha} \quad \alpha = \frac{\beta}{\beta+1} \]

AC analysis

<table>
<thead>
<tr>
<th>(r_{th})</th>
<th>(r_E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{V_T}{I_B})</td>
<td>(\frac{V_T}{I_E})</td>
</tr>
<tr>
<td>(r_{th} = (\beta+1) r_E)</td>
<td></td>
</tr>
<tr>
<td>(g_m = \frac{I_C}{V_T})</td>
<td></td>
</tr>
<tr>
<td>(r_{th} g_m = \beta \quad r_{egm} = \alpha)</td>
<td></td>
</tr>
<tr>
<td>(r_o = \frac{V_A}{I_C})</td>
<td></td>
</tr>
</tbody>
</table>

\(V_T = 26 \text{ meV} \)

\(V_A = [50-100] \text{ V} \)

Early Voltage

Hybrid \(h \) model

Typically, \(100-200 \Omega \)

\(C_u \) - Miller capacitance
Basic Types of Feedback Amplifiers

Fig. 8.4 The four basic feedback topologies: (a) voltage-sampling series-mixing (series-shunt) topology; (b) current-sampling shunt-mixing (shunt-series) topology; (c) current-sampling series-mixing (series-series) topology; (d) voltage-sampling shunt-mixing (shunt-shunt) topology.
First Order Filter Functions

* First order filter functions are of the form

\[T(s) = \frac{a_1 s + a_0}{s + \omega_0} = \frac{a_1 \left(s + \frac{a_0}{a_1} \right)}{s + \omega_0} \]

(c) General

General

All Pass

Fig. 11.14 First-order all-pass filter.

ECE 352 Electronics II Spring 2000

Ch. 11 Active Filters
Second-Order Filter Functions

\[T(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + \omega_0^2 s + \omega_0^2} \]

Notch
\[a_1 = 0 \]

Low Pass Notch
\[a_1 = 0 \]

High Pass Notch
\[a_1 = 0 \]

All-Pass