1. Consider the following phase shift oscillator where the op amps can be assumed to be ideal. Determine an expression for the loop gain $L(s) = \frac{V_o}{V_x}$ in terms of the resistances R and R_2, the capacitances C (all the same size) and the $s (=j\omega)$. For the intermediate currents and voltages, use the terminology shown on the figure. Hint: Write the voltage gain $\frac{V_o}{V_x}$ as a set of three ratios, one for each op amp stage. Derive an expression for each voltage ratio from the circuit in terms of the R's and C. Determine the oscillation frequency ω_o in terms of the resistances and capacitance. Find the size of R_2 needed relative to R for oscillation.
Putting in $s = j\omega$ and simplifying we get

\[
\frac{v_{02}}{v_{01}} = \frac{-j\omega c_R R_2^2}{1 + 3j\omega c_R - 3c_R^2 R_2^2 - j\omega c_R^3} = \frac{j\omega c_R R_2^2}{(1 - 3\omega^2 c_R^2) + j(3\omega c_R - 3\omega c_R^3)}
\]

To get this to go to zero we need this term to go to zero, so

\[1 - 3\omega^2 c_R^2 = 0 \implies \omega = \frac{1}{\sqrt{3}} c_R\]

Then at $\omega = \omega_0$ we have

\[
\frac{v_{02}}{v_{01}} \bigg|_{\omega = \omega_0} = \frac{\omega_0 c_R R_2^2}{3\omega_0 c_R - \omega_0^3 c_R^3} = \frac{\omega_0^2 c_R R_2^2}{3 - \omega_0^3 c_R^3} = 1
\]

\[
\omega c_R R_2 = 3 - \omega_0^3 c_R^3
\]

\[
\frac{1}{\omega c_R R_2} = 3 - \frac{\omega_0^3 c_R^3}{\omega_2 c_R R_2}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]

\[
\frac{R_2}{\omega c_R R_2} = 3 - \frac{1}{\omega_0} = \frac{2}{\omega_0}
\]
ELECTRONICS II
May 27, 2003

I. (20 pts): A second order filter has its poles at

\[s = \frac{1}{4} \pm j \frac{\sqrt{8}}{4}. \]

The transfer function is zero at \(\omega = 3 \) rad/s and is equal to 4 at DC.

Find the analytical expression for the transfer function \(T(s) \).

\[
T(s) = k \frac{\left(s + j \frac{\sqrt{8}}{4} \right) \left(s - j \frac{\sqrt{8}}{4} \right)}{\left(s + \frac{1}{4} + j \frac{\sqrt{8}}{4} \right) \left(s + \frac{1}{4} - j \frac{\sqrt{8}}{4} \right)}
\]

\[
T(s) = \frac{k \left(s^2 + 9 \right)}{\left(s + \frac{1}{4} \right)^2 + \left(\frac{\sqrt{8}}{4} \right)^2} = k \frac{s^2 + 9}{s^2 + \frac{1}{2} + \frac{8}{16}}
\]

\[
T(s) = k \frac{s^2 + 9}{s^2 + \frac{1}{2} + \frac{9}{16}} = \frac{16k \left(s^2 + 9 \right)}{16s^2 + 8s + 9}
\]

\[\implies T(\omega) = \frac{16k}{16k} = 4\]

\[\implies k = \frac{1}{4}\]

\[\implies T(\omega) = \frac{\left(\omega^2 + 9 \right)}{4 \left(\omega^2 + \frac{1}{2} + \frac{9}{16} \right)}\]
IV. (30 pts): The filter below is said to be of the high-pass notch type, i.e,

\[
T(s) = a_2 \frac{s^2 + \omega_n^2}{s^2 + \alpha \left(\frac{\omega_n}{Q} \right) + \omega_n^2}
\]

with \(\omega_n\) lesser than \(\omega_o\).

Derive the expression for \(T(s)\) from the circuit diagram and give analytical expressions for \(\omega_n\), \(\omega_o\) and \(Q\) in terms of \(R\), \(L_1\), \(L_2\), and \(C\).

The notch in the transfer function occurs at the angular frequency \(\omega_n\) (see attached table for the second-order high-pass notch filter. For what ratio of \(L_1/L_2\) does \(\omega_n = 0.9 \omega_o\) ?

\[
T(s) = \frac{\frac{R \omega_n L_2}{R + j \omega_n L_2}}{\frac{1}{\omega_n R + \frac{R \omega_n L_2}{C} + \frac{\delta L_1 L_2 R + R L_2}{C}}} = \frac{\frac{\delta R L_2}{\omega_n R + \frac{R \omega_n L_2}{C} + \frac{\delta L_1 L_2 R + R L_2}{C}}}{\frac{1}{\omega_n R + \frac{R \omega_n L_2}{C} + \frac{\delta L_1 L_2 R + R L_2}{C}}}
\]

\[
T(s) = \frac{\frac{\delta L_1 L_2 R + R L_2}{C}}{\frac{1}{\omega_n R + \frac{R \omega_n L_2}{C} + \frac{\delta L_1 L_2 R + R L_2}{C}}}
\]

\[
T(s) = \frac{\frac{\delta^2}{L_1 L_2 R + R L_2}}{\frac{\delta^2 + \frac{1}{L_1 C}}{\delta^2 + \frac{\delta L_1 L_2}{C} + \frac{\delta^2}{(L_1 L_2 C)}}}
\]

\[
\omega_n \text{ notch is at } \omega_n = \frac{1}{L_1 C} \Rightarrow \omega_n = \frac{1}{\sqrt{L_1 C}}
\]

\[
\omega_o = \frac{1}{\sqrt{L_1 L_2 C}} \Rightarrow \omega_o = \left(\frac{L_1 + L_2}{L_2} \right) \omega_n \quad \text{for } \omega_o = (0.9 \omega_n)^2
\]

\[
\frac{L_1}{L_2} = 0.2346
\]
III. (30 pts): Consider the circuit below in which the op-amp is assumed to be ideal (i.e., infinite input resistance looking into the positive and negative terminals). Show that the transfer function for that filter \(T(s) = \frac{V_o}{V_i} \) is of second order and can be expressed as follows

\[
T(s) = \frac{a_0}{s^2 + \left(\frac{\omega_0}{Q}\right)s + \omega_0^2}
\]

(3)

Give analytical expressions for \(\omega_0 \) and \(Q \) in terms of \(R_1, R_2, \) and \(C_3, C_4. \)

\[
\omega_0 = \sqrt{\frac{1}{C_3 C_4 R_1 R_2}} \quad \frac{1}{R_1 + \frac{1}{C_4 R_2}}
\]

\[
Q = \frac{\frac{1}{C_3 C_4 R_2}}{\sqrt{C_3 C_4 R_1 R_2}} \quad C_4 \left(\frac{1}{R_1} + \frac{1}{R_2}\right)
\]