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Multielectron Atoms;

the Pauli Principle
and Periodic Table

j0.1 Introduction
102 The Independent-Particle Approximation
10.3 The IPA Energy Levels
10.4 The Pauli Exclusion Principle
10.5 Fermions and Bosons; the Origin of the Pauli Principle *
10.6 Ground States of the First Few Elements
10.7 The Remaining Elements
10.8 The Periodic Table
10.9 Excited States of Atoms™
Problems for Chapter 10

* These sections can be omitted without significant loss of continuity.

Elifl | Introduction

In Chapter 8 we saw how the Schrédinger equation was used to predict the
properties of the hydrogen atom. Another early triumph for the Schrédinger

_ €quation was that, unlike the Bohr model, it could be extended successfully to
~ atoms with more than one electron. Today it appears that the Schrodinger

quation can correctly account for the structure of all of the hundred or so

- multielectron atoms and for the way in which these atoms come together to
- form molecules. Thus, in principle at least, the Schrédinger equation can ex-

Plain all of chemistry. It is this impressive accomplishment that we introduce in
this chapter. We complete the story in Chapter 12 where we describe how
atoms combine to form molecules.

Our first step is to find a way to handle quantum systems containing
Several particles. The simplest method — and the method we describe here
—is called the independent-particle approximation. When this method was
first applied to multielectron atoms, it predicted many atomic levels, some of
W!liL'h exist but many of which do not. This partial failure led to the discovery
Of & new law that applies to multielectron systems. We deseribe this law,
Called the Pauli exclusion principle, in Section 10.4. Armed with this princi-
Ple, we can successfully describe the general properties of all multielectron
toms from helium through uranium and beyond, as we sketch in Sections
10.6 10 10.9.
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102] The Independent-Particle Approximation

The Schradinger equation for one electron moving around a nucleyg cay

solved exaclly, as we described in Chapter 8. With two or more electryp, be
exact solution is not possible, and one must resort to various APProXimg;, iy
The starting point for almost all calculations of multielectron atoms iS ¢ ;”&
the independent-particle approximation, or IPA. This approach js !"'I’nf]-ed
from the classical theory of the solar system, in which one starts by u-@a“ng ll“r
motion of each planet independently, taking account of just the dom;, Ih‘l
force, the attraction of the sun. Once one has found the orbits of all the ph";él:;
separately, one can, if desired, improve these approximate orbits by C“’""ﬁc[ins
for the small attraction of the planets for one another. &

In treating the motion of one planet, it is a very good approxXimatig,, In
ignore the forces of the other planets in comparison with the force of the g
The corresponding approximation for an atom is much less satisfactory: g ol
example, we consider a neutral atom with 20 electrons (calcium), it is trye thyy
the single largest force on any one electron is the force of the nucleus, with
charge 20e; but it would be a very poor approximation to consider only (his
force and to ignore completely the repulsion of the 19 other electrons, wig, i\
combined charge of —19¢. What we do instead is to treat the motion of each
electron independently, taking account of the force of the nucleus Plus the
force of the average static distribution of the Z — 1 other electrons. We will
refer to the potential energy U(r) of each electron treated in this way as (he
IPA potential energy. The problem is now reduced to finding what the IPA po:
tential energy U(r) should be and then, given U(r), to solving the Schradinger
equation to find the possible wave functions and energies of each electron i
the multielectron atom.

To implement this approach quantitatively requires a whole series of
successive approximations. One must first make some reasonable guess for the
electron wave functions; from these wave functions, one can calculate the
charge distribution in the atom and hence the IPA potential-energy function
U(r) of each electron. Using this potential-energy function, one can solve the

Schrédinger equation for each electron and obtain an improved set of waye

functions. Using these improved wave functions, an improved TPA potential-

energy function U(r) can be calculated; and so on. This iterative procedure i§

called the Hartree-Fock method and, with the aid of a large computer, can
yield quite accurate atomic wave functions and energy levels.
Fortunately, we do not need to go into any details of the Hartree-Fock

procedure here. Using simple known properties of the atomic charge distribu- -

tion, we can get an excellent qualitative picture of the IPA potential-energy
function U(r). Using this knowledge of U(r), we can get a good — sometimes
even quantitative — understanding of the electron wave functions and hencé
of atomic structure,

The essential feature of the independent-particle approximation is that
cach electron can be considered to move independently in the average field
of the Z — 1 other electrons plus the nucleus. In most atoms it is a good ap:
proximation to assume further that the distribution of the Z ~ 1 other elec
trons is spherically symmetric around the nucleus, (With this additiﬂﬂ?I
assumption, the IPA is often called the central-field approximation.) We W"IF
therefore assume that the charge distribution “seen” by any one electron
spherically symmetric, which means that the IPA potential energy U(r) is 107
dependent of 6 and ¢, and can be written as U(r). This greatly simplifies 0U"
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_yssion, for as we saw in Chapter 8, when U(r) is spherically symmetric, the
d1hmlm' part of the Schrédinger equation always has the same solutions, char-
?‘ﬂbcriz.ed by the familiar angular-momentum quantum numbers [ and m.

1 The main features of U(r) are easily understood if we recall two proper-
pherical charge distributions, both of which follow from Gauss’s law.
sl if an electron is outside a spherical distribution of total charge ., the

Jectron experiences exactly the same force as if the entire charge Q were con-
Z’cu“-mcd at r = 0, namely

o of 8

Je
F = k'("—: (10.1)
r

ocond, if the electron is inside a spherical shell of charge, it experiences no
at all from the shell. (
If the electron in which we are interested is close enough to the nucleus,
i will be inside all the other electrons and will experience the force of the nu-
clear charge Ze but no force at all from the other electrons; in other words, it
fecls the full attractive force of the nucleus:

force

B Zke?

r2

F

[r inside all other electrons] (10.2)

If we now imagine the electron moving outward from the nucleus, it will
steadily move outside more and more of the other electrons; thus the force will
¢till be given by (10.1) but with Q equal to the nuclear charge Ze reduced by
the charge of those electrons inside the radius r. Eventually, when the electron
is outside all of the other Z — 1 electrons, Q is given by Ze minus (Z — 1)e;
thatis,Q = e and

[r outside all other electrons] (10.3)

ke?
F=—
2

Therefore, an atomic electron that is outside all its fellow electrons experi-

ences the same force as the one electron in hydrogen.
The potential energy U(r) of the electron is the integral of the force. It
follows from this discussion that when r is outside all the other electrons

k 2
U(ry = - _re_ [r outside all other electrons] (10.4)

On the other hand, as r approaches zero,

Zke?

U(r) = — [as r — 0] (10.5)

Sin(?e, then, the electron of interest is inside all the others.* Between these two
fegions, U(r) connects these two functions smoothly, as shown qualitatively in
Fg 10.1.
*It follows from (10.2) that U(r) is ~Zke?/r plus some constant. However, as r — 0,

Ehis constant is negligible compared to —Zke?/r, and we have ignored it in (10.5). The
rorreSponding constant in (10.4) is exactly zero since we are defining U to be zero at
= 00,
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Potential energy —

FIGURE 10.1

The IPA potential energy U(r) of
an atomic electron in the field of
the nucleus plus the average
distribution of the other Z — 1
electrons. As ¥ — 00,

U approaches —ke*/r; as r — 0,
U approaches —Zke?/r as in

Eq. (10.5).
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We can express the behavior shown in Fig. 10.1 by writing U(r) ag

ke?

U(r) = -Zeff(r)T (10_6)

r Here Z.(r) gives the effective charge “felt” by the electron and depengy o
f When r is inside the other electrons, Z.; approaches the full nuclear Chargr'
£

Zegt = Z [r inside all other electrons] (1().7)

As r increases and the nuclear charge is shielded, or screened, by more 8
more of the other electrons, Z ¢ decreases steadily, until as r moves outside al
other electrons, Z.¢; approaches 1:

Zegg =~ 1 [r outside all other electrons] (10_3)

03| The IPA Energy Levels

e —— :In

Once the potential energy U(r) is known, our next step is to find the energy

levels and wave functions of each electron. The potential energy U(r) is suff;. |

ciently like the hydrogen potential energy that we can get a good qualitative

! understanding of the solutions by analogy with what we already know aboyt
hydrogen and hydrogen-like ions.

Just as with hydrogen, U(r) depends only on r, and the Schrédinger
equation separates. In particular, the two angular equations are exactly the
same as for hydrogen. This means that the states of definite energy have angu-
lar momentum given by the familiar orbital quantum numbers [ and m, and all
of the 2/ + 1 different orientations given by m = [,/ —1,---, =/ have the
same energy. Since U(r) does not involve the spin at all, the energy is also the

same for both orientations, m; = + %, of the spin. Thus, each level has a degen-
eracy of at least 2(2/ + 1).

As was the case with hydrogen, the solutions of the radial equation are
characterized by a principal quantum number #; and a quantum state is com-
pletely specified by the four quantum numbers #, [, m, and m,. The lowest en-

! ergy level is 1s (that is,n = 1,1 = 0) and is twofold degenerate because of the

i two possible orientations of the spin. Just as in hydrogen, the 1s wave function
is concentrated closer to the nucleus than any other wave function. This means
that in the region where the 1s wave function is large, U(r) is close to the |
hydrogen-like potential energy with Z ~ Z. Therefore, the 1s wave functiol
approximates that of a hydrogen-like ion with nuclear charge Ze; the Is
energy is close to —Z2Fg,

E, ~ —Z’Eg (10.9)

(where Eg denotes the Rydberg energy, 13.6 €V, as usual) and the most proba'
ble radius is about ag/Z (as described in Section 8.10). _
Just as with hydrogen, the next energy level has n = 2. But here an lf‘_"
portant difference emerges. In hydrogen the 25 and 2p states are degenerd!®
whereas in multielectron atoms the 2s states are lower in energy. This diffe”
ence is casy to understand if we look at the 2s and 2p radial distributio™
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shown in Fig. 8.23, which we reproduce here as Fig. 10.2. These two distribu-
jions peak at about the same radius, four or five times further out than the 1s
gistribution. This means that the 2s and 2p wave functions are concentrated in
o region where the nuclear charge Ze is screened by any electron in the 1s
states, and the 2s and 2p electrons see an effective charge Z. which is less
than Z. However, the 2s distribution (unlike the 2p) has a secondary maxi-
mum much closer in. That is, a small part of the 2s distribution penetrates the
region where Zg is close to the full nuclear value Zyg = Z. Therefore, on av-
erage, a 2s electron is more strongly attracted to the nucleus than is a 2p elec-
tron. This means that the 2s electron is more tightly bound and has lower
energy-

With the n = 3 states, there is a similar separation of energies. In
Fig. 10.2 it can be seen that both the 3s and 3p distributions have secondary
peaks near r = 0, with one of the 3s peaks much closer in. Therefore, the 3s
state penetrates closest to the nucleus and has the lowest energy, the 3p is
next, and finally the 3d. This trend is repeated in all higher levels: For cach
value of n, states with smaller [ penetrate closer to the nucleus and are lower in
energy. This systematic lowering of the energy for states with lower [ is shown
schematically in Fig. 10.3.

In many atoms the lowering in energy of the “penctrating orbits”
becomes so important that the order of certain levels can be reversed, as
compared to hydrogen. This is illustrated in Fig. 10.3, which shows the 4s
level slightly below the 3d. We will see that such reversals of the order of

energy levels have an important effect on the chemical properties of many

clements.
For a hydrogen-like ion, we saw that all states with a given n tend to clus-
ter in a spatial shell, with radius roughly equal to the Bohr value r ~ n*ag/Z.

Hydrogen Multielectron Atom
s, . R A
3s 3p 3d 4d
P/ A 4p
2s 2p 4s . 34
B . =5 3p
3s
1s Ba= B 2p
25 o

A« E~-Z%E;

FIGURE 10.2

The radial probability distributions
for the n = 1, 2, and 3 states in
hydrogen. The numbers shown are
the most probable radii in units

of ag.

FIGURE 10.3

Schematic energy-level diagrams for
a hydrogen atom and for one of the
electrons in a multielectron atom.
In hydrogen, all states with the
same n are degenerate. In
multielectron atoms states with
lower [ are more tightly bound
because they penetrate closer to
the nucleus. In many atoms this
effect results in the 4s level being
lower than the 3d, as shown here.
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_ tial shells is even greater in a multielectron atom than it is in hydrogen.

Wolfgang Pauli
(1900~1958, Austrian)

At the age of 21, Pauli published a
review of relativity that is still re-
garded as a masterpiece. He made
many fundamental contributions
to quantum physics, including the
exclusion principle (1925) for
which he won the 1945 Nobel
Prize in physics, the neutrino hy-
pothesis (Chapter 17),and work in
relativistic quantum field theory.
His powerful personality was leg-
endary. He generously credited
others with ideas that he originat-
ed and detailed in letters to col-
leagues, but did not publish. Yet he
often displayed a biting wit and
mercilessly denounced any evi-
dence of sloppy thinking among his
peers. Of a paper submitted by a
colleague, he said, “This isn't right.
This isn’t even wrong.”

This same clustering into spatial shells occurs in multielectron atomg ang
fact, more pronounced. The n = 1 states are closest to the nucleys , :
nearly the full nuclear charge Ze; therefore, their most probable radiyg
to the Bohr value, ap/Z, for the n = 1 state of a hydrogen-like ion wity
Ze. The states with successively higher n are concentrated at progr,
larger radii where they feel an effective charge Z e that is progr
smaller.'The most probable radius for these states is roughly

sl.' li‘i
4 Qe!
15 ¢ tJS{:
L‘har%
“SSivy,
Csg "L‘Ii,

nzaB

Fmp = Zost (1 0.]0)

Since Zg gets smaller as n gets larger, the proportionate separation of the 8,
that this clustering into spatial shells is according to n, exactly as it is in h;::,_
gen. This contrasts with the energy levels, whose order deviates, as we haye
seen, from the simple hydrogen ordering.

Occasionally, the IPA energy levels can be calculated easily and with sur.
prising accuracy, as the following example illustrates.

" Example 10.1

As we will see in Section 10.6, the ground state of lithium (Z = 3) has ty,
electrons in the 1s level and one in the 2s. Estimate the energy of the thig
electron when it is raised to the 3d level.

When the outer electron has been raised to the 3d level, its wave func. .
tion is concentrated far outside two inner, 1s, electrons. Thus, to a very good

(that is, Z.; = 1), and its energy should be just the hydrogenic energy

E; = —Ey/Z* = —1.512 eV. This means that the energy to remove the outer .
electron (in this level) should be 1.512 eV, a prediction that agrees outstand-

ingly well with the observed value of 1.513 eV.

[Iﬁﬁ The Pauli Exclusion Principle

I

Knowing the possible states of each electron in a multielectron atom, we are
now ready to discuss the possible states of the whole atom. Let us consider
first the atomic ground states. For these, our problem is to decide how the elet:
trons are to be distributed among their possible states so that the atom as 2
whole has the minimum possible energy. :

One might expect that the ground state of any atom would be found by
placing all of its Z electrons into the lowest, 1s, state; but this is not what is ob-
served to happen. The explanation for what does happen was discovered by
the Austrian physicist Wolfgang Pauli, who proposed a new law, now called the.
Pauli exclusion principle. This principle states that:*

*The Pauli principle applies to many other particles besides the electron. For exampl®:
it applies to protons and to neutrons and has important consequences for the eners

levels of nuclei, as we will see in Chapter 16. In this chapter, however, we are concernes

approximation, we can say that it is moving outside an effective charge of +¢

only with electrons. [
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PAULI ExcLUSION PRINCIPLE

No two electrons in a quantum system

can occupy the same quantum state. (10.11)

o]l Was led to this law by a study of the states of many atoms, and to this day,
¢ best evidence for the Pauli principle is its success in explaining the diverse
o’ erties of all the atoms. There is, however, evidence from many other fields
f: well. For example, the electrons in a conductor are found to obey the exclu-
;':0“ principlc, and many of the observed properties of conductors (conductiv-
i  specific heat, magnetic susceptibility, etc.) depend in a crucial way on the
salidity of the principle.

To illustrate the exclusion principle and some of the evidence for it, let us
onsider two simple atoms, helium and lithium. First, let us imagine putting to-
cther a helium atom (Z = 2) from a helium nucleus and two electrons. If we
add one electron to the nucleus, its lowest possible state is the 1s state

n = 1,1 = m = 0), with its spin either up or down (ms = +%) If we next add
(he second electron, it too can go into the 1s state. But according to the exclu-
sion principle, the two electrons cannot occupy exactly the same guantum
gtate. Since they have the same values of n, [, and m, they must have different
values of my; that s, if both electrons are in the 1s state, their spins must be
antiparallel. This situation is sketched in Fig. 10.4, where part (a) shows two
electrons in the 1s state with spins parallel, a situation that is never observed,;
on the other hand, Fig. 10.4(b) shows two electrons in the 1s state with spins
antiparallel, the situation that is observed. The two possibilities shown in
Fig. 10.4 would be easily distinguishable, since the first would have a nonzero
magnetic moment, while the second has . = 0. That the helium ground state is
always found to have p = 0 is clear evidence for the exclusion principle.

The situation with the excited states of helium is different. For exam-
ple, there is an excited state with one electron in the 1s level and the other in
the 2s level. In this case the two electrons are certainly in different quantum
states, whatever their spin orientations (parallel or antiparallel), as shown in
Fig. 10.5. Thus, the Pauli principle does not forbid either of these arrange-
ments, and both are observed, the first with u # 0 and the second with
w=0.

As a second example, let us imagine putting together a lithium atom
(Z = 3) from a lithium nucleus and three electrons. When we add the first two
electrons, they can both go into the 1s level, provided that their spins are an-
tiparallel. But since there are only two possible orientations of the spin, there
is now no way in which the third electron can go into the 1s level [Fig. 10.6(a)].
The Pauli principle requires that the third electron go into some higher level,
the lowest of which is the 2s. Therefore, the ground state of lithium has to be as
shown in Fig. 10.6(b), with the third electron in the 2s level and its spin either
up or down.

In general, the Pauli principle implies that any s level (1s, 2s, etc.) can ac-
commodate two electrons but no more. Levels with higher angular momentum
can accommodate more electrons because their degeneracy is larger. For ex-
ample, any level with / = 1 contains six distinct quantum states (6=2X3
since there are two orientations of S and three orientations of L); therefore,
any p level (I = 1) can accommodate six electrons, but no more. Similarly, any
d level, with I = 2, has ten distinct states (2 X 5) and can accommodate ten

electrons, but no more.

C
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2s 2s
-
Forbidden Allowed
(2) (®)
FIGURE 10.4

The ground state of helium has
both electrons in the 1s level.

As required by the Pauli principle,
their spins have to be in opposite
directions.

e

1s % 1s f

Both allowed

FIGURE 10.5

The lowest excited state of helium
has one electron in the 1s and one
in the 2s level. The Pauli principle
places no restrictions on the spin
orientations in this case.

2 st
T T

Forbidden Allowed
(a) (b)
FIGURE 10.6

(a) It is impossible to put three
electrons in the 1s level without
violating the Pauli principle.

(b) Therefore, the ground state of
lithium has two electrons in the 1s
level and one in the 2s level. The
third electron’s spin can point
either way.
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e

05 Fermions and Bosons; the Origin

| of the Pauli Principle*

—

*1In this section we describe how the Pauli principle follows from certain syp,
properties of the multiparticle wave function. The ideas described here are of preq, :h!,.
oretical importance but will not be used again until Chapter 13, and this se (

Cliog ¢,
2 % v Lo
be omitted on a first reading, Ul

Before exploring further the consequences of the Pauli principle, we take , m
ment to describe in this section where the principle comes from, One can take ”i
view that the Pauli principle is an observed property of electrons (an( Snm{:
other particles, including protons and neutrons) — a property for which there i&
overwhelming experimental evidence. If you would like to take this view, Ihcs
you can safely skip this section for now. Nevertheless, the Pauli principle actuy,
.follows from a more fundamental idea — the complete indistinguishabili, of
identical particles in quantum mechanics. This resull is interesting in its own T h
and has a remarkable consequence. All the particles of nature fall into jus twg
categories: First there are the so-called fermions, which do obey the Pauli Pringi.
ple, and second there are the bosons, which do not. We will describe some of the
striking differences between these two kinds of particles in Chapter 13.

We say that two particles are identical if they have all the same intringj
properties — same mass, same charge, and same spin. Thus any two electropg
are identical, but an electron and a proton are certainly not. In classical me.
chanics, even identical particles are distinguishable in the sense that we could,
in principle at least, keep track of which is which: Consider, for example, the
two electrons in a helium atom. In the classical view each electron follows 3
definite orbit around the nucleus. Armed with a powerful enough microscope,
we could label as number 1 the electron that is on the right at noon today; and
then by following their orbits carefully, we could still say tomorrow which is :
electron 1 and which electron 2. In quantum mechanics this experiment is |
doomed to failure. We might imagine, in principle at least, measuring the two
electrons’ positions at noon today and labeling as number 1 the one on the
right. But within some fraction of a second their two wave functions will over-
lap, and when we measure their positions again there is absolutely no way of
saying which electron is which. We say that in quantum mechanics two identi-
cal particles are indistinguishable — we simply cannot say which is which.

Perhaps surprisingly, the indistinguishability of identical particles in
quantum mechanics has profound consequences. To describe these, we have to
discuss the wave functions for two or more particles. For two spinless particles
in one dimension this would have the form (x;, x,) where

probability of finding one particle between
(1, x,)|? dxy dx, =< x; and x; + dxy, and the other between (10.12)
xpand x, -+ dx,

If the same particles have spin, the wave function would have to have anoth'er
variable to identify the spin states of the particles. For instance, we might writ¢
¥ = (xy, my, xo, my), where

probability of finding one particle
between x; and x; + dx; with

S, = myfi and the other between
xzand x, + dx, with S, = m,h

lyr(x1, my, X0, )2 dixy dxey = (10.13)
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¢ dimensions the variables x; and x, would be replaced by position vec-

(hre R ; :
and r,. To cover all these cases, we will simply write the two-particle

n
5 v ']

“]r\;c function as = (1,2), where the “1” and “2" are shorthand for what-

"'ra.‘ variables are needed to identify each particle. For instance, in the case of

oW (10.13), “1” stands for (xy,m;). In most of the discussion that follows, you

’.éh[ want to focus on the simplest case of Eq. (10.12), for which “1” is just
T‘lt"}'rl for x1 and “27 for x;.
S guppose first that our two particles are not identical; for example, r(1,2)

ouldbed state of a high-energy electron and a low-energy proton. In this case
« 2 WAVE function (2, 1), in which the roles of the two particles are reversed,
IouId represent a high-energy proton and a low-energy electron — an entire-
distinct situation. But suppose instead that ir(1,2) were the wave function
or tWO identical particles, two electrons for instance. The indistinguishability
Uf;dentical particles requires that the states represented by ¢(1,2) and 4/(2,1)
with the roles of 1 and 2 reversed) must be physically indistinguishable. It
makes 1o difference which is particle 1 and which is particle 2. In particular,
{he probability densities associated with (1, 2) and (2, 1) must be the same:

lp(2, 1) = |w(1,2)]

It turns out that there are only two ways in which this indistinguishability
requirement can be met. For a given kind of particle (electron or photon, for
instance), either

W

(10.14)

$(2,1) = +¢(1,2) (10.15)

for all two-particle states, or

w(2,1) = —¢(1,2) (10.16)
for all two-particle states.* Wave functions that satisfy (10.15) are said to be
symmetric under particle exchange; particles whose multiparticle wave functions
are symmetric in this way include photons and pions and are called bosons, after
the Indian physicist Satyendranath Bose. Wave functions that satisty (10.16) are
said to be antisymmetric under particle exchange; particles whose multiparticle
wave functions are antisymmetric include electrons, protons, and neutrons and
are called fermions, after the Italian-American physicist Enrico Fermi.

It is found experimentally that all bosons have integer spin, s =0,
1,2,---, whereas all fermions have half-odd-integer spin,Jr s = %, %, %, ---. This
connection often lets one decide quickly whether a given particle is a fermion
or boson. For example, electrons, protons, and neutrons all have spin half, so
have to be fermions; photons have spin 1, so have to be bosons. We will
describe several of the dramatic differences between bosons and fermions in
Chapter 13. Here we will just describe how the requirement (10.16) implies
that fermions obey the Pauli exclusion principle.

’;’ﬂ:e proof that (10.15) and (10.16) are the only two possibilities is actually quite
simple, though it requires a little more knowledge of quantum mechanics than we have
Yet developed. It is one of the fundamental postulates of quantum mechanics that if
‘“_{U wave functions represent the same physical state, one must be a constant multiple
of the other. Therefore, in our case ¢/(2, 1) = kys(1,2). Interchanging the particles again,
:"e find that (1,2) = kg(2,1) = k*¥(1,2), which implies that k2 =1ork = £1.

In relativistic quantum field theory, one can in fact prove this connection.
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Satyendranath
Bose
(1894-1974, Indian)

Bose was born and educated in
Calcutta, India. In a paper written
in 1924 he derived the Planck for-
mula for blackbody radiation by
treating the photons as what we
would now call bosons. This paper
drew the attention of Einstein and
secured an invitation for Bose to
visit Europe, where he met Ein-
stein, de Broglie, Born, and others.
Einstein extended Bose’s ideas,and
the rules that govern bosons are
now called Bose—Einstein statis-
tics. We will see some of the dra-
matic consequences of these ideas
in Chapter 13.
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Consider a two-particle wave function that happens to be a simple Prog
Uy &

W(1,2) = $(1)x(2) (01 &

First, suppose the two particles concerned are nonidentical, an electrop an
proton, for instance. Then the wave function (10.17) represents a state in Whi ad
the electron occupies the state ¢ and the proton occupies the state y. Tpe fy {ch i
tion ¥(2,1) = $(2)x(1) represents the completely distinct state with the :,](" I
ton in state ¢ and the electron in state X- Suppose, however, the two par iclluv |
are identical fermions (two electrons, for example). In this case, thej; at's ‘
function must satisfy the antisymmetry requirement (10.16), which (10.17 du\ie.
not (unless one of the functions ¢ or X is identically zero). The only way (o rc:‘
oncile (10.17) with (10.16) is to use the antisymmetric combination i

P(1,2) = d(1)x(2) — x(1)¢(2) (10.g)

[Notice that this automatically satisfies y/(2,1) = —tp(1,2). Note also thay asiy
stands, this wave function is generally not normalized; this requirement I8 eqs.
ily taken care of, but need not concern us here.] A wave function of the form
(10.18) represents two identical fermions, one of which is in state ¢ and one i
state x (though we can’t say which is which). Notice that this actually make,
good sense: We can view (10.18) as an equal mixture of two states, one With
particle 1 in state ¢ and particle 2 in state x and the other with the two parti-
cles reversed. Given the indistinguishability of the two particles, this is a very
natural compromise.

The “antisymmetrized” wave function (10.18) is the only way to cop-
struct a state of two identical fermions with one in the state ¢ and one in the
state y. But if ¢ = y, then (10.18) is identically zero. Therefore, there is no
way to construct a state in which two identical fermions occupy the same one-
particle state, and this is the Pauli principle.

If our two identical particles were bosons, then the same argument shows
i that the wave function with one particle in the state ¢ and one in the state X
1 must be the “symmetrized” combination

¥(1,2) = ¢(1)x(2) + x(1)(2) (10.19)

which gives no trouble if ¢ = x- Thus, two identical bosons can occupy the
same one-particle state, and bosons do not have to satisfy the Pauli principle.
In fact, as we will see in Chapter 13, while two identical fermions cannot occu-
py the same state, there is a sense in which identical bosons actually prefer t0
occupy the same state.

F]ﬁ_{ Ground States of the First Few Elements

——

Let us return to the consequences of the Pauli principle for multielectron
atoms. To determine the ground state of an atom, we have only lo assign itS_Z
electrons to the lowest individual energy levels consistent with the Pauli prin-
ciple (that no two electrons occupy the same quantum state). In this section ‘Wﬁ
use this procedure to find the ground states of the lightest few atoms, starting
with hydrogen (Z = 1) and going as far as sodium (Z = 11). .
The ground state of hydrogen has its one electron in the 1s level, with its
spin pointing either way. The energy is £ = —Ep = —13.6 eV, which mean’
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ol t]:f energy needed to remove the electron — the ionization energy — is
130 clv[uving on to helium, we already saw that the ground state has both elec-
in the 1s level, with their spins antiparallel. Because of the greater nu-
charge (Z = 2), the 1s level of helium is much lower in energy than that
¢ pydrogen. If we write the energy of either electron as —Ze;"Eg, then Zeg
‘ﬁ,” ot be equal to the full nuclear cha rpe, 2, since each electron is screened by
4 other. Nevertheless, Z. should be appreciably more than 1 — perhaps
1'01”“| 1.5. Thus, we would expect that helium should be significantly more
2 htly bound than hydrogen. This prediction is well borne out by experiment.
l[llﬁb first ionization energy of helium (the energy to remove one electron) is
jound 10 be 24.6 eV, nearly twice that of hydrogen; since the ionization energy
is I‘.'I‘Opm‘iitmal to 7,L.ff2, this implies that Z.g is close to V2 = 1.4.

Another measure of an atom’s stability is its first excitation energy, the
energy to it it to its first excited state: In both H and He this involves lifting
one electron from the 1s to the 2.\'qleveIA In helium this should require a larger
energy by a factor of roughly Z.q”, the same ratio as for the ionization ener-
gies. This, too, is confirmed by experiment: The first excitation energy of He is
19.8 eV, compared to 102 eV in H.

The ionization and excitation energies of an atom are important indica-
(ors of the atom’s stability. On both of these counts, helium is about twice as
stable as hydrogen. In fact, helium has the largest ionization and excitation en-
ergies of any atom. Since high stability tends to imply low chemical activity, we
might guess that helium should be chemically inactive; and this proves to be
the case. Helium is one of the six noble, or inert, gases, which show almost no
chemical activity at all, form no really stable compounds, and can bind together
into liquid or solid form only at relatively low temperatures.

Another important difference between the hydrogen and helium atoms
concerns their sizes. We have seen that the wave functions of a hydrogen-like
ion are scaled inward by a factor of 1/Z, compared to the corresponding wave
functions of hydrogen. Therefore, the radius of the 1s wave function of helium
should be about 1/Z.g times that of hydrogen, and the He atom should there-
fore be roughly two-thirds the size of the H atom. This prediction also is cor-
rect, The precise value of the atomic radius depends on how one chooses to
define it, but representative values are 0.08 nm for H and 0.05 nm for He.

The differences in energy and radius between hydrogen and helium re-
flect the larger nuclear charge (Z = 2) of helium. When we consider the lithi-
um atom (Z = 3), we encounter a new kind of difference, due to the Pauli
exclusion principle. Let us consider first an electron in the 1s level of Li. Be-
cause of the greater nuclear charge, this 1s electron is more tightly bound and
concentrated at a smaller radius than a corresponding electron in either He or H.
However, the Pauli principle allows only two of lithium’s three electrons to
occupy the 1s level; the third electron must occupy the 2s level and is much
less tightly bound. In fact, we can easily estimate the binding energy of this
outermost electron. Because it is outside the two other electrons, it sees an el-
fective charge of order Z.y = 1, about the same as for the one electron in hy-
‘jITUgCn.'ﬂwreforc. since it is in the n = 2 level, it should have about the same
ionization energy as an n = 2 electron in hydrogen, 3.4 eV. This estimate
agrees reasonably with lithium’s observed ionization energy of 5.4 eV. (That
the actual value, 5.4 eV, is a bit larger than our estimate of 3.4 ¢V shows that
”_*!e outer electron is not perfectly shielded by the inner two and sees an effec-
live charge somewhat greater than Zgg = 1.) This ionization energy is the fifth
smallest of any stable atom and means that the lithium atom can easily lose its
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FIGURE 10.7

Excitation of beryllium (Z = 4)
requires only 2.7 eV to lift one of
the 2s electrons to the nearby 2p
level. In the excited state the spins
of the 25 and 2p electrons can
point either way,

outermost electron. This is the main reason why lithium is so chemic
as we describe in Section 12.2.

Because the outer electron of lithium is in the s = 2 level, the ”
should have a much larger radius than either He or H. This predictioy is ony
firmed by the data in Table 10.1, which shows the ionization energies
of the first four atoms, 1H, sHe, 5Li, and ,Be. (When convenient, we illdié}dﬂ
the atomic number, Z, by a subscript on the left of the atomic symbol —_ . At
be confused with the mass number, A, which is sometimes showy g o
superscript on the left.) 4

TABLE 10.1

lonization energies and radii of the first four atoms. Atomic numbers Z are showy,
subseripts on the left of chemical symbols. The energy levels are not to Scale Sincs

. o ' €
corresponding levels get deeper as Z increases.

ilIIy ﬂcll\,Q

Or
ang ., 1

H \Eie N
Tonization energy (eV): 13.6 24.6 5.4 93
Radius (nm): 0.08 0.05 0.20 0.14

Occupancy of energy levels: 2s

e

+
o

=g

H

In beryllium (Z = 4) the fourth electron can join the third electron in
the 2s level, provided that their spins are antiparallel. Because of the larger
nuclear charge, this level is more tightly bound and its radius smaller than in
sLi. Therefore, the ,Be atom should have a larger ionization energy and a
smaller radius, as the data in Table 10.1 confirm.

To some small extent, the +Be atom with its filled 25 level is similar to the
oHe atom with its filled 1s level. But the differences are more important than
the similarities. In particular, the oHe atom is not only hard to ionize, it is also
hard to excite, 19.8 eV being needed 1o lift one of the electrons from the 1s to
the 25 level. Excitation of the ,Be atom requires only that one of the 2s elec-
trons be lifted to the nearby 2p level, just 2.7 eV higher (see Fig. 10.7). This
means that one of the electrons in Be can easily move to the higher level. As
we will see in Chapter 12 (see especially Problem 12.30), this allows Be to
bond to other atoms. For this reason, Be, unlike He, is chemically active and
forms a number of compounds.

After beryllium (4;Be) comes boron (sB). The first four electrons of sB g0
into the 1s and 2s levels, just as with 4Be. But as required by the Pauli princi-
ple, the last electron of sB must occupy the 2p level. Therefore, in moving from
4Be to 5B, we see two compeling effects: The increase in Z causes any given

ot
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First excited state
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{0 be somewhat more tightly bound, but the final electron has to occupy
o el that is slightly higher and hence somewhat less tightly bound. As far as
37 ation energy is concerned, the second effect wins. The ionization energy
o s 83 ¢V, just a little less than the 9.3 eV of ,Be. On the other hand, the
0 ?illf" of 5B is less than that of ;Be and continues the trend of shrinking radii
"Ef.ih increasing Z. In neither case is the difference large.

¥ The six elements after 4Be are

/Ei—e’f;;lt boron carbon nitrogen oxygen fluorine neon
SymbOlZ 5B 6C 7N 80 9F 10Ne
qallof these atoms the first four electrons fill the 1s and 2s levels. Since the 2p

evel can hold six electrons, the remaining electrons all go into the 2p level.
Thus, a8 W€ move from sB to 1oNe, the additional electron of each succeeding
atom gOes into the same level, and the main differences should be due to the in-
creasing nuclear charge Z; in particular, the jonization energy should increase
and the radius should decrease. These trends show up clearly in Fig. 10.8, in
which the ionization energies and atomic radii are plotted as functions of Z for
all the first 11 atoms. With one small exception, the two graphs change steadily
in the expected directions (ionization energy increasing, radius decreasing) as
7 increases from 5 to 10. The one exception is the small drop in ionization en-
ergy as one moves from ;N to gO; we will return to this anomaly later.

When we reach ;oNe, the 2p level has its full allotment of six electrons.
Therefore, when we move on to sodium, {;Na, the last electron must go into
the next, and much higher, level — the 3s level. This reverses all of the trends
set by the last eight atoms: The ionization energy drops abruptly, and the ra-
Jius increases abruptly, as is shown clearly in Fig. 10.8.

Both of the graphs in Fig. 10.8 suggest a parallel between 3Li and ;;Na.
Both atoms have unusually low ionization energies and unusually large radii.
The low ionization energies mean that both atoms can easily lose one electron.
This allows lithium and sodium to combine with other atoms to form many dif-
ferent chemical compounds and is the reason why both atoms are chemically
so active, as we describe in Chapter 12.

The similarity between ;Li and 1;Na is an example of the periodic behav-
ior of the elements. As we consider elements with successively higher Z, chem-
ical similarities recur at certain regular, or periodic, intervals. Another
example of this periodicity is the pair of elements ;He and ;pNe. Both are very
stable (large ionization and excitation energies) and very small in size. In
Chapter 8 we mentioned that the word “shell” is often used for a group of

tHe Ionization energy (eV) Ne

20 |+

10:}=

0.2

0.1
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FIGURE 10.8

The ionization energies and atomic
radii of the first 11 elements.




energy levels that are close to one another and well separated from any q

From the first graph in Fig. 10.8, it is clear that the 1s level should be Co :'Q_fS.
ered as one shell by itself, and 2s and 2p together as another. For thig Ie. :"L
helium and neon are called closed-shell atoms. We will see that there ;”_'“.!l.
closed-shell atoms in all and that they are the six noble gases. In the Same w_&"f
lithium and sodium can be described as being closed-shell-plus-one ang 4,
the first of six such elements, called the alkali metals. S

Just before the stable 1oNe is fluorine, oF. The ionization energy of fly,

rine is 17.4 eV, which is the third largest ionization energy of any atop, O %
might, therefore, imagine that fluorine would be chemically inactive, by, ) CF.
is definitely not the case. Fluorine is one of the most active of all the elemg, Y
The reason for this activity is that the fluorine atom is Cl(lsed-.'s'llel|-!]lim_|h-.,u"u'
since its 2p level is one short of the ful] complement of six electrons, Becy
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. Usgp
of the large nuclear charge, the 2p level is very well bound (as the large ion‘j
ization energy testifies). In fact, the 2p level of F is so well bound that ca

bind an extra, sixth electron. That is, the negative ion, I, is stable, With the |
extra electron just filling the 2p level. The tendency of an atom to bind ,
extra electron is measured by its electron affinity. This is defined as the Cneryy
released when the atom captures an extra electron and forms a negative jo,
(or, equivalently, the energy needed to remove one electron from the negatiye
ion). The electron affinity of fluorine is 3.4 eV, the third largest for any ¢},
ment. As we discuss in Chapter 12, it is because of its ability to bind an eXtrg
electron that fluorine is so active.

0.7 The Remaining Elements

In Section 10.6 we examined the ground states of the first 11 elements. In this
section we sketch a similar analysis of some of the remaining 90 or so ele-
ments. This will emphasize what was already becoming apparent. Because of
4 the Pauli principle, the properties of atoms do not vary smoothly and uniform-
h ly as functions of Z. Rather, as we examine atoms with successively more elec-
- trons, their properties vary more or less smoothly as long as each extra
i electron can be accommodated in the same shell; but each time a shell is filled
: and a new shell comes into play, there is an abrupt change in the propertics, re-
versing the previous smooth trends, As we saw in Section 10.6, this leads to the
periodic occurrence of atoms with similar physical and chemical properties.
To find the ground state of an atom, we must assign the Z electrons to the
lowest levels consistent with the Paulj principle. For |H and ,He the electrons
go into the 1s level. For ,Li through 1(Ne, the 1s level is tull, and the outer, or
, valence, electrons go into the 2s and then 2p levels. Similarly, when we move
on to the elements 11 through 18 (sodium through argon), the 1s, 2s, and 2p
levels are all full, and the valence electrons go into the 3s and then 3 p levels.
Perhaps the most descriptive way to show the assignment of electrons to
energy levels is with energy-level diagrams like those in Fig. 10.7. Unfortu-
nately, these diagrams become increasingly cumbersome as we discuss atoms
with more electrons. A more compact way to show the same information is t0
give the electron configuration, which is just a list of the occupied levels, each
with a superscript to indicate the number of electrons in it. For example, the
electron configuration of the sodium ground state is

R e b b

11Na: 1522s22p63s1
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ron configurations of the ground states of the first 18 elements.

lect

[/l_fi:;Shell Second Shell Third Shell

H st sLi 1 1s22s! 1Na: 1522522 p83s?

He: 1s? Be 152252 Mg 1572522 p®3s*
B :1s%2s%2p! 13Al : 1522522 p%35%3 p!
«C :1s%25%2p? 1S 1152252283523 p?
N :1s%2s5%2p? 15P - 1522522 p%3523 p°
O :1s225%2p* S 11522522p%3573 p*
oF :1s%25%2p° 17Cl : 1522522 p83523 p°
1oNe: 1s%2s%2p8 1gAT 1 1522522 p%35%3 b

The propertics of elements 11 to 18 closely parallel those of elements 3
{0 10. As we have already noted, ;;Na and ;Li are both easily ionized and are
chemically very active. As one moves from Z = 11 to Z = 18 and the 3s and
3p levels fill, the ionization energies increase (with two small exceptions) and
(he atomic radii decrease, just as occurred between Z =3 and Z = 10. At
7 = 18 the 3p level is completely full and qgAr, like 1oNe, is very stable and
chemically inert. Just before 1gAr is chlorine (37Cl), which, like oF, is able to ac-
cept an extra electron into the one vacancy in its outer p level and is therefore
chemically active.

When we move beyond 1gAr to 19K (potassium), the story becomes more
complicated. One might expect that the next level occupied would be the 3d
level. In fact, however, the tendency for levels with low angular momentum
(the “penetrating orbits”) to have lower energy causes the 4s level to be slight-
ly lower than the 3d, as discussed in Section 10.3. Therefore, the configuration

of the ground state of (K is
19K 1s22522p63s23p64s1

The order in which the energy levels fill is shown in Fig. 10.9. In this pic-
ture we have also shown the grouping of the energy levels into shells contain-
ing levels that are close to one another but well separated from other levels.
(Note that in this context an individual level within a shell is sometimes called
a subshell.) We sce, for example, that the 3s and 3p levels are close together,
but that the gap from 3p to 4s is large. Thus 3s and 3p form a shell by them-
selves, just like 2s and 2p. Therefore, gAr is a closed-shell atom, like 10Ne and
2He, and is the third of the noble gases. The next element, potassium (;9K), is a
closed-shell-plus-one atom, with low ionization energy, and is one of the alkali
metals, similar to its two predecessors, 1;Na and 3Li.

It can be seen in Fig. 10.9 that, as it happens, the lowest level in each shell is
always an s level and the highest is a p level (except in the first shell, which has
only the 1s level). Thus all the closed-shell-plus-one atoms have a single s elec-
tron outside a closed-shell core; all closed-shell-minus-one atoms (often called
halogens) have one vacancy, or hole, in the p level of an otherwise filled shell.
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FIGURE 10.9

Schematic diagram showing the
order in which levels are occupied
as one considers atoms with
successively higher 7. This is not
the energy-level diagram for any
one atom; it just gives the order in
which levels are occupied as Z
increases. The shaded rectangles
indicate the groupings of nearby
levels into energy shells. The figure
to the right of each level or shell
gives the number of electrons that
can be accommodated; the figures
on the far right are the atomic
numbers Z of the closed-shell
atoms. Note that some levels are
too close to be ordered :
unambiguously; for example, 5d is
partially occupied before 4f, but 4f
is completely filled before 54. The
exact sequence of occupancy can
be found from the electron
configurations shown inside the
back cover.

FIGURE 10.10

Typical radial probability
distributions for a 34 and 4s
electron in the transition elements
215¢ through 3,Zn. Note how the
4s distribution peaks more than
four times farther out than the 3d.
For this reason, it is the 4
electrons that determine the
chemical properties of the
transition metals.
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Alter 19K comes calcium (20Ca), whose 4s level is full. Then with scandiyp,
(218c¢), the 3d level begins to fill. Since any d level can hold 10 electrons, the
filling of the 3d level takes us from 215¢ through 44Zn (zinc). These 10 elemenyig
are called transition metals and are alike in several ways. This is because the 3d
wave functions peak at a much smaller radius than the 4g functiong
(Fig. 10.10). Thus, although it is the 34 level that is filling in this sequence of ¢.
ements, it is the 4s electrons that are farthest out. Since it is the outer electrons
that can interact with other atoms, all of the transition metals from 215¢ 10 357
have similar chemical properties,

Once the 34 level is full at s0Zn, the 4p level starts to fill, and the se-
quence of six elements from 3,Ga (gallium) to 55Kr (krypton) is analogous to
the sequences from 3Al to 18Ar and from 5B to (Ne, in which the 3pand2p
levels were filling, In particular, 3,Kr is a closed-shell atom and is the fourth of
the noble gases.

Beyond 5K, the fifth, sixth, and, finally, seventh shells are occupied, but
since there are no really important new features, we need not go into details.
The periodic recurrence of similar atomic properties can be clearly seen in
plots of a variety of properties as functions of Z. In Fig. 10.11 we show ioniza-
tion energies, atomic radii, and electron affinities for Z = | through 86, (The
first two graphs are extensions of those shown in Fig. 10.8.) Notice how the
ionization energies have pronounced maxima at the closed-shell noble gases
and minima at the c[osed~rshell-1)[us-011e alkali metals. The ionization energies
have smaller maxima at several other points, and most of these are easily ex-
plained. For example, the small peak at 4Be is because the 2s level (or sub-
shell) is filled; that at 30Zn is because the 3d level is filled.

The small peak in the ionization energy at ;N is a little harder to explain
and is due to a subtle but important change when we move from 7N to gO. The
configuration of nitrogen is

N 1522522 P

with three electrons in the 2p level. The six distinct quantum states of the 2P
level arise from the three possible wave functions (the orbitals 2py, 2py, and

|
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2p,, shown in Fig. 8.21%) each with two possible spin orientations. Therefore,
the three outer electrons in nitrogen can occupy three distinct orbitals. This
arrangement keeps the electrons well separated, reducing their electrostatic
repulsion, and makes the nitrogen atom relatively stable, with a comparatively
large ionization energy. In oxygen the fourth 2p electron must occupy the
same orbital as one of the others (with opposite spin, of course). Because the
distributions of these two electrons overlap strongly, their electrostatic repul-
sion is relatively large, and the ionization energy of oxygen is a little less. It is
for this reason that the plot of ionization energy in Fig. 10.11 has the small
drop after ;N. For the same reason, there is a small drop in ionization energy
after ;<P also visible in Fig. 10.11.

The graph of atomic radius against Z shows the expected trends, with R
falling to a minimum at each of the noble gases and jumping abruptly to a
maximum at each closed-shell-plus-one atom. The downward slope from ,;Sc
FO 30Zn is very gentle because the last electrons of these transition elements go
into the 3d level, which is concentrated at a smaller radius than the occupied
4.s level. Thus the atomic radius is determined by the 4s electrons and changes
little from Z = 21 to 30 (from 0.21 to 0.15 nm). The even gentler slope from
Z = 57 to 71 is a similar effect: With these inner transition elements, the level

—_—

Section 10.7 « The Remaining Elements

*One can arrive at the same conclusion using the wave functions with m = 1,0,—1,
but the argument is a little more complicated.
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FIGURE 10.11

lonization energy, atomic radius,
and electron affinity as functions of
atomic number Z. The vertical lines
separate complete shells. The
electron affinities for elements 57
through 72 have not been
measured.
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being filled is the 4f level, which has much smaller radius than the ocgy, e
level; thus the atomic radius is almost com pletely determined by the 63 fa(cil-ﬁx
and changes very little (from 0.27 to 0.22 nmy). g

The third graph in Fig. 10.11 shows the electron affinity. As eXpectey |,
shows sharp maxima at the closed-shell-minys-one atoms (the Ilalgéc
oF, 17Cl, etc.) and drops abruptly to zero at the closed shells (;He, 10Ne, gy, g
is also zero at those atoms with closed subshells, such as ;Be(1s22,2) 7l
| 12Mg(15%25%2p%35%). Some atoms with half-filled subshells also have zero e(llfld
[ tron affinity. For example, an eighth electron in 7N would have to oceup ;

. the
same orbital, 2p,, 2py, or 2p,, as one of the other 2p electrons, and the 1.63111;{{ _

o1 b(ﬁ

ing Coulomb repulsion would raise its energy so high that it would |
bound.

To conclude this section, we mention one more atomic property thyg
can be predicted from our knowledge of the electron states — the angyl,,
momentum of the whole atom. For many atoms, calculation of the tota] aﬁ.
gular momentum is difficult and well beyond our present discussion, Hoy,.
ever, there are several cases that are quite straightforward. This is becayg, i
the total angular momentum of all the electrons in any filled level is zerq 1 o
understand this useful result, we have only to note that in a filled leve] there
are equal numbers of electrons with spin up and spin down; therefore, the
total spin E S is certainly zero. Further, for each electron with a given valye |
of L., there is another with exactly the opposite value (since all the valueg |
m={[l-1--,—/ are occupied); therefore, the total orbital angular mg.
mentum EL is also zero. It follows that the total angular momentum of
any closed-shell or closed-subshell atom must be zero. For example, (he
total angular momenta of ,He and 10Ne, and of 4Be and 3yZn, should be and
are zero.

The total angular momenta of the closed-shell-plus-one alkali atoms are
also easy to predict. These atoms all contain various filled levels, with zero
total angular momenta, plus a single electron in an s level (I = 0). Therefore,
the total angular momentum of any alkali atom (5Li, ;Na, etc.) is equal to the
spin angular momentum ( § = % of its one valence electron.

One can also predict the angular momentum of the closed-shell-minus-
one atoms. These all consist of filled levels, with zero total angular momen-
tum, plus a p level containing five of its six possible electrons. We know that
the addition of one more p electron (with 7 = 1) would produce a filled level,
with total / = 0. The addition of one vector to another can give zero only if
the two vectors have the same magnitude. It follows that the tota) orbital an-
gular momentum of the original five electrons must also have total / = 1. A
similar argument shows that the total spin of the five electrons must be
5= % Therefore, the closed-shell-minus-one atoms must have total [ =1
and § = %, and this is what is observed. The resulting fotal angular momen-
tum depends on the relative orientation of L and S; this, also, can be predictedy
but would take us too far afield at present.

ot s e

ﬁ:lﬁi The Periodic Table

R

The periodic recurrence of atoms with similar properties had been noticed |
long before the discovery of quantum mechanics and the understanding ©f .
atomic structure. In 1869, a German chemist, Lothar Meyer, had plotted sever” |
al different properties of the elements as functions of their atomic masses. I#
particular, he had noticed that his plot of atomic volume (which was very
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ilar 10 the plot of atomic radius in Fig. 10.11) was divided by five sharp
siff  into six distinct sections, or periods, corresponding (as we now know) to
Pﬁfwcccssiue filling of the first six shells.
the” [n the same year, 1869, the Russian chemist Dmitri Mendeleev had pro-
ced his periodic table, an ingenious array in which the elements are
4 ’angcd s0 as to highlight their periodic properties. In most modern periodic
: ples, the elements are arranged in order of increasing atomic number, placed
I_ﬂﬂm left to right in rows, with a new row starting each time a shell is closed.
hin each row, the elements are placed so that atoms with similar properties
" wnlaincd in the same vertical column of the table.

One popular arrangement of the entire table is shown in Fig. 10.12. The
horizontal rows, f)r periods, cc.u.}tain dif[crcn_l numbers of c_lemenls, corre-
Spnnding to the different capacities of the various shells. The first period con-
ains just two elements, H and He; the next two periods contain eight elements
cach; and the next two contain 18 each. The sixth period contains 32 elements,
from Z = 3510 86, but to save space, the part of this period from Z = 57 to 71
is usually detached and arranged in a separate row below. For the same reason,
(he corresponding elements (from Z = 89 to 103) in the seventh period are
placed in a second additional row.

The vertical columns, or groups, contain elements with corresponding
arrangements of their valence electrons. The leftmost group, often called group I,
contains the closed-shell-plus-one atoms, each with a single s electron outside a
closed core. The next column, group II, has the closed-shell-plus-two atoms,
each with two s electrons outside a closed core. On the right side of the table
are the six columns, groups ITI to VIII, whose atoms have a filled or partially
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Dmitri Mendeleev
(1834-1907, Russian)

Several chemists had recognized
that when arranged by atomic
mass, the elements show periodic
behavior, but the Russian chemist
Mendeleev was unique in his
recognition that certain elements
were clearly missing from this
scheme. When three of the miss-
ing elements were discovered with
exactly the properties he had pre-
dicted, his periodic table gained
international acceptance.

Groupl II m v v VI VII VII
1 2
Period 1—= H He
3 4 B 6 |7 8 9 10
2— Li | Be B C|{N|O]| F |Ne
11|12 1B (14 (15 {16 [i7 |18
3—> Na [Mg| ———Transition elements———— [Al | Si | P | § | Cl | Ar
19 |20 |21 |22 |23 24 25 |26 |27 28 [20 30 [31 |32 |33 |34 (35 |36
4— K |Ca|Se| Ti| V| Cr|Mn|Fe |Co|Ni|Cu|Zn|Ga | Ge| As | Se | Br
37 |38 |39 |40 |41 |42 |43 |4 (45 [46 [47 |48 |49 S0 |si |52 [s3 |54
5—>Rb | Sr | Y | Zt | Nb |Mo| Tc [Ru | Rh |Pd |Ag|Cd [In | Sn | Sb | Te [ T | Xe
55 |s6 |s77 |12 |13 |74 |15 |16 |77 |78 |79 (8o |81 |82 |83 (84 |85 |86
6— Cs |Ba| * |HE | Ta| W |Re [ Os| Ir | Pt [Au | Hg [TL | Pb | Bi | Po | At | Rn
87 |88  [B9-103 104 [105 [106 |107 |108 [109
7— Fr |Ra| t [ Rt | Db | Sg | Bh | Hs | Mt
| Inner transition elements i
. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 n
*Lanthanides—>| La | Ce | Pr [ Nd |Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu
. 80 |90 |9t |92 |93 |9 |95 |96 [97 |98 [99 |wo |1 102 (103
tActinides—| Ac | Th | Pa | U | Np | Pu [Am |Cm | Bk | Cf | Es | Fm | Md | No | Lr

FIGURE 10.12

The periodic table of elements, showing atomic numbers and chemical symbols. Each
horizontal row is called a period and each vertical column, a group. Our labeling of the
groups is one of several schemes in commeon use. To save space, the inner transition
elements haye been detached from the main table at the positions indicated by the asterisk
and dagger. Elements shown in color are “artificial” in the sense that they do not occur in
3ppreciable amounts on earth.
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FIGURE 10.13

The periodic table showing the
levels that are filling in different
parts of each period. The filling
order for the d and f subshells is a
little irregular; for details, see the
periodic table inside the back cover
of this book.

FIGURE 10.14

The division of elements into
metals and nonmetals. Since the
properties of the elements vary
more or less continuously, the
boundaries are only approximate
and are sometimes placed a little
differently. The elements labeled
“intermediate” include the so-called
semiconductors — like silicon and
germanium — and various elements
that are hard to classify — like
carbon, which can be a conductor
(graphite) or an insulator
(diamond).

] [15]
2s 2p
[ 35 | 3p
4s 3d 4p
58 4d Sp
6s | = 5d 6p

7s |t 6d

R 5 -

filled p level.* At the extreme right is group VIII (somelimes called group g
which contains the closed-shell noble gases. Ten interior columns contaip gy,
transition elements, in which a d level is being filled. Since the first d leve] (34)
is in the fourth shell, the transition elements begin only in the fourth Perigg
The sixth and seventh shells contain [ levels (4f and 5f); the inner lransitiu,;
elements, in which these f levels are being filled, are the elements Wwhich gy,
placed in two separate rows at the bottom of the table. The 4f elements ate
called the lanthanides or rare earths, and the 5/ elements are knowy as
actinides. Each period of the periodic table can be divided into Sectiong
according to the levels being filled. These divisions are shown in Fig. 10.13,
Because of the way the periodic table is constructed, one often finds (hy
elements which are close together in the table have many properties in cop.
mon. An example is the division of the elements into metals and nonmetals 4
shown in Fig. 10.14. The elements in the upper right part of the table are 4]
nonmetals, including oxygen, nitrogen, and all the noble gases. Slightly to the
left of the nonmetals are a few intermediate elements that are hard to classify:
these include the semiconductors germanium and silicon, of such importance
in modern electronics. Finally, all elements on the left of the table are metals
(except hydrogen, which is generally considered to form a class by itself). We
will discuss the properties of metals further in Chapter 13, but we can already
understand why they are all found on the left of the periodic table: The high
electrical conductivity of metals requires that there be one or more electrons
that are easily detached from their atoms. From our knowledge of atomic ion-
ization energies (Fig. 10.11) we would, therefore, expect to find the metals

*

-

H Intermediate

Nonmetals

Metals

]

Metals ‘]

—

*The one exception is the noble gas He, with its closed 1s level. You should also b€
aware that there are several different schemes used for labeling the groups.
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_d the beginning and not at the end of each period. In other words, metals {
|0‘wl[d be on the left of the periodic table, exactly as is observed Lo be the case. l
% e periodic table is a convenient way Lo tabulate many different atomic
erties. A large table (turned on its side to fit the page better) can be found
Prﬂ.dc the back cover and includes the atomic number, atomic mass, name, i
e Jbol, and electron configuration of every element. With a little use, you will |
5)"frk| , learn to locate elements in the table. If you have any difficully, you can |
(,!lf!l' find the atomic number, 7.1in one of the alphabetical lists of elements in |
i:;?“‘“dix C and then locate the element itself in the periodic table. |
!
- 10.9 Excited States of Atoms* ’
iy = |
Dfain the’ . section could be omitted without significant loss of continuit I
evel (3) *This S¢ & ¥ |
h Periog go far in this chapter, we have discussed only the ground states of multielec- i
ransitio, (ron atoms. In this section we give a brief introduction to the excited states. |
'hich gpe Recall that in the atomic ground state the Z electrons occupy the lowest possi- '
lents ape ple levels consistent with the Pauli principle. To obtain the excited states, we
nown g must simply raise one or more of the electrons to higher levels, as illustrated in .
Sectiong Fig. 10.15. This picture shows the energy levels of any one electron in the sodi-
0.13. um atom (Z = 11). The 11 dots show the 11 electrons as they are distributed
nds thyg in the atom’s ground state. We obtain the excited states by moving electrons to
in com. higher levels; in the picture we have indicated five possibilities — for example,
1etals ag the arrow labeled 1 represents an excitation in which the outer valence elec-
2 are gl tron is raised from the 3s to the 3p level.
y to the Even for an atom as simple as sodium, there is an enormous number of '1
classi* different excited states, corresponding to the many possible arrangements of
orta the Z electrons among the numerous different levels. Fortunately, not all
: metals of them are equally important: States in which several electrons have been
21f). We raised to higher levels are usually less important than those involving a single
already electron. For example, when an atom absorbs light, the most probable excita-
he high {ions involve moving just a single electron from its ground-state position (as
ectrons with any one of the arrows in Fig. 10.15). Here we will confine attention to
lic ion- these one-electron excitations.
metals It is clear in Fig. 10.15 that the excitations that require the least energy
are those that involve moving a valence electron to a higher level (arrows 1 or 2,
FIGURE 10.15
The energy levels for any one
electron in sodium. In the ground
state of the atom, the 11 electrons
are distributed as shown by the
dots. The five arrows indicate five
ways in which electrons could be
excited to higher levels. (Although
the ordering of the levels shown
here is correct, they are not drawn
S to scale; in particular, the n =1
lso be and n = 2 levels are much deeper
than shown.)




328 Chapter 10 * Multielectron Atoms; the Pauli Principle and Periodic Table

for example). Since the energy required to excite a valence electron is ¢ :
always a few eV, which is the energy of a visible (or nearly visible) ph::-'ns-t |
these excitations are often called optical excitations. Because these nr‘["n_
lowest excitations, a photon (or other projectile) with Just enough eney the
produce optical excitations cannot produce any other kinds of excitatiop - '
it is a simplifying feature of the optical excitations that they often Ocey; Mg
context where no other kinds of excitation are possible. g
_ If we increase the energy of the photons (or other projecliles) collig;
| with an atom, they may be able to excite some of the inner electrons (arrowgng
| 4,and 5 in Fig. 10.15). It is clear from Fig. 10.15 that the highest-energy ekcil \
tions are those that involve the innermost, ls, electrons. The most Strikjy,
thing about these is the very large energies involved. We saw in (10.9) thy, IER
energy of the 1s level is 8

!
|

D e~

s

r—r

Ey, ~ —Z°Eg

For sodium (Z = 11) this is more than 1 keV, and for a heavy atom such
uranium (Z = 92) it is more than 100 keV. Because of the Pauli principle,jt i
impossible to excite a 1s electron to any level that is already full. (Thyg in
Fig. 10.15 one cannot excite a Ls electron to either of the n = 2 levels.) Thepe.
fore a 1s electron can be excited only by lifting it all the way to the valeng,
level or higher. Since the binding energy of these upper levels is only a few ey
the energy required to excite one of the innermost electrons (in all but the‘
very lightest atoms) is several keV or more, the energy of X-ray photons. For
this reason, excitations of the inner electrons are called X-ray excitations,

Once a vacancy has been created in an inner shell, any one of the higher
electrons can drop down into the vacancy, emitting an X-ray photon as it does
so. This is the origin of the X-rays studied by Henry Moseley and described iy
Section 5.9. The discussion there was based on the Bohr model but depended
only on the formula E, = —Z?E,/n’ for the inner energy levels.* Therefore,
the results of Section 5.9 carry straight over to a modern quantum treatment
and need not be repeated here.

e il e .

Optical Excitations in Alkali Atoms

To conclude this section, we take a slightly closer look at those excitations in-
volving only the valence electrons — the so-called optical excitations. To sim-
plify the discussion further, we consider only atoms with a single valence
electron. These are the closed-shell-plus-one atoms, Li, Na, K, Rb, Cs, Fr, which
appear in group I of the periodic table and are called the alkali atoms (or
alkali metals, since they all form metals).

In each of the alkali atoms the single valence electron is concentrated
outside a core consisting of the nucleus (with charge Ze) and Z — 1 electrons,
all arranged in spherically symmetric closed shells. The total charge of this core
is +e, the same as that of the single proton in hydrogen. If the valence electron
were entirely outside this core, it would have exactly the same allowed ener”
gies as the electron in hydrogen. In reality, the wave function of the valence
electron penetrates the core, where the positive charge of the nucleus is 1€

T T

-

e

*Notice that in the discussion of Section 5.9, we took for granted that an electron i
one of the levels n = 2,3,--+ could only drop to the n = 1 level after one of the n =
electrons had been ejected. Thus, we were implicitly assuming the Pauli principle
that discussion.
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shielded and attracts the electron more strongly. Thus all the levels of the va-
jence clectron of an alkali atom lie a little lower than the corresponding levels
in hydrogen. Since the [ = 0 states penetrate closest to the nucleus, they are af-
fected the most. For the states of higher 1, the wave functions penetrate the
core very little and the energies are very close to the corresponding energies in
hydrogen (as was illustrated in Example 10.1).

The close relationship between the optical levels of an alkali atom and
the levels of hydrogen is illustrated in Fig. 10.16, which shows the levels of the
valence electron in lithium (Z = 3). In the ground state the valence electron
occupies the 2s level, which is appreciably lower (by nearly 2 eV) than the
n = 2 level in hydrogen, as we would expect. The higher s levels shown are all
visibly lower than the corresponding levels of hydrogen, although the differ-
ence is smaller for the states of higher n, since these are concentrated at larger
radii and penetrate the core less. The difference between corresponding p
states is much smaller, and for the d and f states the difference cannot be seen
on the scale of Fig. 10.16.

The optical levels of the other alkali atoms have the same general behav-
ior as those of lithium, although the lowest level of the valence clectron is one
shell higher in each successive atom, Na, K, and so on. Thus the lowest level of
the valence electron in sodium (Z = 11) is the 3s level. The next level in Na is
the 3p level, about 2.1 eV above the ground state. As we see in the following
example, the 3p — 3s transition in Na produces the yellow light characteristic
of the sodium-vapor lamps used to light many streets.

Example 10.2

(a) The first excited state of the sodium atom is the 3p level, 2.10 eV above
the 35 level. What is the wavelength of the light emitted in the 3p — 3s tran-
sition? (b) Because of the spin-orbit interaction (Section 9.7) the 3p level is
actually two levels, 2.1 X 1072 eV apart (whereas the 3s is still just a single
level), What is the difference AA between the two wavelengths produced by
3p — 3s transitions in Na?

Section 10.9 = Excited States of Atoms 329

FIGURE 10.16

The energy levels of the H atom
compared with the levels of the
valence electron in the lithium
atom.
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(a) The wavelength of a photon with energy E,=210eVis
_he

Ey
_1240eV +nm
~ 210ev

A

= 590 nm (]0_20)

Light with this wavelength is yellow, which is why sodium lamps py q
their characteristic yellow glow. lee

(b) Differentiating (10.20) with respect to E,, we find that

dAi hc AE7
AN m P AE, = — AR = )
dEy b2 E72 Y E’y
2.1 x 1073
= _(590 nm) X T ~ —0.6 nm

The actual wavelengths of the two transitions are indicated in Fig 109
Itis because of this small “fine structure” splitting that the yellow line of
sodium is actually a doublet of two lines, making the sodium spectruy,
very easy to identify.

(S and L parallel)
FIGURE 10.17 / ap

The spin-orbit interaction splits the
3p level in Na into two levels, with
the states in which S and L are
parallel having slightly higher
energy. The wavelengths of the two
transitions are shown in
nanometers,

LS 1
2
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CONCEPT DETAILS .
Independent-particle approx. (IPA) Each electron moves in the field of the nucleus and the
average distribution of the other Z — 1 electrons
(Sec.10.2)
IPA potential energy U(r) = —=Zeg(r)ke*/r (10.6), where
Zeg(r)—>Z,asr —0 and Zey(r)—1,asr— oo
IPA energy levels See Fig. 10.3
Pauli exclusion principle No two electrons can occupy the same quantum state
(Sec.10.4)

*

Bosons and fermions Bosons — symmetric multiparticle wave functions

(10.15) — do not obey the Pauli principle

Fermions — antisymmetric multiparticle wave functions
(10.16) — obey the Pauli principle

Electron configuration List of occupied energy levels, with numbers of electrons
shown as superscripts  (Sec. 10.7)
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Problems for Chapter 10 331

Ionization energy, atomic radius, electron affinity
(Fig. 10.11)

holls

Spatial shell = group of levels with similar radii
Energy shell = group of levels with similar energies
Closed-shell atom = noble gas (He, Ne, -+ )
Closed-shell-plus-one = alkali metal (Li, Na, )
Closed-shell-minus-one = halogen (F,CI,---)

pcri”dic table

Table of the elements highlighting periodic properties
(Fig. 10.12)

p wited states of atoms™
4

Optical excitations — valence electrons,

X-ray excitations — inner electrons  (Sec. 10.9)

secTioN 10.2 (The Independent-Particle
Approximation)

10.1 e Find the electric field & at r = ap in the 1s state of
a hydrogen atom. Compare with the breakdown field
of dry air, about 3 X 10°V/m. [Hint: Use Gauss’s
law; treat the atomic electron as a static charge distri-
bution with charge density p(r) = —e|i(r)|% and use
the result of Problem 8.43.]

10.2 ee* The IPA potential-energy function U(r) is the
potential energy “felt” by an atomic electron in the
average field of the other Z — 1 electrons plus the
nucleus. If one knew the average charge distribution
p(r) of the Z — 1 other electrons, it would be a fairly
simple matter to find U(r). The calculation of an ac-
curate distribution p(r) is very hard, but it is easy to
make a fairly realistic guess. For example, one might
guess that p(r) is spherically symmetric and given by

p(r) = poe™"

where R is some sort of mean atomic radius.

(a) Given that p(r) is the average charge distribution

of Z — 1 electrons, find py in terms of Z, e, and R.

(b) Use Gauss’s law to find the electric field & at a

point r due to the nucleus and the charge distribution

p. (¢) Verify that as r — 0 and r — 00, & behaves as

required by (10.2) and (10.3). [Hint: The integrals

needed in parts (a) and (b) are in Appendix B.]

SECTION 10.3 (The IPA Energy Levels)

103 (a) Estimate the energy of the innermost electron
of lead. (b) What is its most probable radius?
(Appendix C has a list of atomic numbers.)

10.4 « Answer the same questions as in Problem 10.3, but
for silver.

10.5 ee The ground state of sodium (Z = 11) has two
electrons in the 1s level, two in the 2s, six in the 2p,
and one in the 3s. Consider an excited state in which
the outermost electron has been raised to a 3d state
(but all of the inner electrons are unchanged). Because

the 3d wave function is not very penetrating, you can
treat the outer electron as if it were completely out-
side all the other electrons. (a) In this approximation
what is the potential-energy function U(r) felt by the
outer electron? (b) In the same approximation, what
should be the energy of an electron in a 3d state?
Compare your answer with the observed value of
—1.52 eV. Why is the observed value lower than your
estimate?

10.6 ee The ground state of lithium (Z = 3) has two elec-

trons in the 1s level and one in the 2s. Consider an
excited state in which the outermost clectron has
been raised to the 3p level. Since the 3p wave func-
tions are not very penetrating, you can estimate the
energy of this electron by assuming it is completely
outside both the other electrons. (a) In this approxi-
mation what is the potential-energy function felt by
the outermost electron? (b) In the same approxima-
tion write the formula for the energy of the outer
electron if its principal quantum number is 7.
(c) Estimate the energy of the 3p electron in this way
and compare with the observed value of —1.556¢V.
(d) Repeat for the case that the outer electron is in
the 3d level, whose observed energy is —1.513¢V.
(e) Explain why the agreement is better for the 3d
level than for the 3p. Why is the observed energy for
3p lower than that for 347

secTioN 10.4 (The Pauli Exclusion Principle)

10.7 e (a) How many electrons can be accommodated in
an electron energy level with [ = 2?7 (b) How many if
[ = 37 (¢) Give a formula (in terms of [} for the num-
ber of electrons that can be accommodated in a level
with arbitrary L

10.8 ¢ (a) Imagine an electron (spins = %) confined in a
one-dimensional rigid box. What are the degenera-
cies of its energy levels? (b) Make a sketch of the
lowest few levels, showing their occupancy for the
lowest state of six electrons confined in the same
box. (Ignore the Coulomb repulsion among the
electrons.)
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10.9 ee(a) I the electron had spin § = 5‘ (but was un-
changed in every other respect), how many different
orientations would its spin have? (b) Sketch energy-
level diagrams similar to Fig. 10.6(b) showing how the
levels would be occupied in the ground states of
helium (Z = 2) and lithium (Z = 3) il the electron

3
had ¢ = 5

10.10°¢ Repeat Problem 10.8, assuming that the elec-

3
tron had spin s = 3,

10.11 ee Imagine several identical spin-half particles all
confined inside the two-dimensional rigid square box
discussed in Scction 8.3. Assume that the particles do
not interact with one another and hence, that the al-
lowed energies for each particle are exactly as shown
in Fig. 8.2. (a) What are the lowest four allowed ener-
gies for any one particle? How many particles can be
accommodated in each of these levels, given that they
obey the Pauli exclusion principle? [Hint: In figuring
degeneracies, do not forget that each particle has two
possible orientations of its spin.] (b) Assuming that
there are six particles in the box, draw an energy-level
diagram similar to Fig. 10.6(b), showing the distribu-
lion of particles that gives the state of lowest energy
for the system as a whole. (¢) Do the same for the
case where there are ten particles in the box.

SECTION 10.5 (Fermions and Bosons *)

10.12 == The wave function for two spinless particles would
have the form ¢ = (x(, x3). (a) Give an example of
such a function that is symmetric under particle ex-
change and normalizable (integral of I (xy, xq)|* over
all x; and all x;, is finite). (b) Give an example that is
antisymmetric. (¢) Give an example that is neither
symmetric nor antisymmetric,

10.13 e (a) Consider the helium atom to be a fixed point
nucleus (charge 2¢) with two spin-half fermion elec-
trons. What is the degeneracy of its ground state?
(That is, how many independent states of the whole
atom have the ground state energy?) (b) Suppose
instead that the electron was a spin-half boson. (Tt is
an experimental fact that all spin-half particles are
fermions, but there is nothing to stop us imagining a
spin-half boson.) What then would be the degenera-
cy of the He atom’s ground state? (¢) What would
the degeneracy be if the two electrons were some-
how distinguishable? (For example, they might
have slightly different masses.) The different num-
bers that you should get in the three parts of this
problem are examples of the different “statistics” of
fermions, bosons, and distinguishable particles. (See
Chapter 13.)

SECTION 10.6 (Ground States of the First Few
Elements)

10.14 » Draw two energy-level diagrams similar to Fig.10.7,
showing the ground state and first excited state of a
boron atom (sB).

10.15 ¢ Draw four energy-level diagrams, similar to those in
Fig. 10.7, to illustrate the ground states of the follow-
ing atoms: 5B, ¢F, 14Ne, 1;Na.

10.16 * Draw two energy-level diagrams similar to K
showing the ground state and first exciteq Sta%‘ i
neon atom. ®ofy

10.17 » Consider the graph of ionization energ 2
atomic number Z in Fig, 10.8. It is clear that .i‘r,f"lm
each shell (Z = 1 102 and Z = 3 to 10), the in‘,n.,
tion energy tends to increase with Z. Howeye, Niz,
is a small drop as one moves from aBe o ¢, li. Cre
this drop. (The second small drop, between Ny
§O, is explained in Section 10.7.) an

10.18 ° The first ionization energy of an atom is the ;.
mum energy needed to remove one electrop, For I|.]|u‘
lium, this is 24.6 eV. The second ionization CNerg,
the additional energy required to remove '
electron. (a) Calculate the second ionization ener,
of helium. (b) Whalt is the total binding energy of |, Y
lium (that is, the energy Lo take it apart into twe Se ¥
rated electrons and a nucleus)? P2,

4 Secgyy

10.19 #» In this question you will estimate the tota] €nergy

|

of a helium atom. (a) What would be the lotal Chery,
of a helium atom (in its ground state) in the approy;.
mation where you ignore completely the electrostaj,
force between the two electrons? [Hins: In this gy
proximation you can lreat each electron Separately 4
if it were in a hydrogen-like ion. The tota) energy j
just the sum of the two separate energies.] (b) Your
answer in part (a) should be negative (indicating tha
the system is bound) and too negative since you
ignored the positive potential energy due to the re.
pulsion between the two electrons. To gel a rough
estimate of this additional potential energy, imagine
the electrons to be in the first Bohr orbit, with radius
ag/2 (the appropriate radius for a hydrogen-like jon
with Z = 2). To minimize their energy, the two elec-
trons would move around the same circular orbit
always on opposite sides of the nucleus, a distance ag
apart. Use this semiclassical model to estimate the
potential energy of the two electrons. Combine this
with your answer to part (a) to estimate the total
energy of the He atom. Compare with the observed
value of ~79.0eV.

10.20 == (a) If the electron had spin § = ; (but was un-
changed in every other respect), how many different
orientations would its spin have? (b) Sketch energy-
level diagrams, showing how the levels would be o¢-
cupied in the ground states of ,Be and SO if the
electron had s = 5

SECTION 10.7 (The Remaining Elements)

10.21 ¢ Use the energy-level diagram of Fig. 10.9 to write
down the electron configurations of 3,Zn, 35Br, 54X
ssAL, g7Fr.

10.22 » Use the energy-level diagram of Fig. 10.9 to find the
electron configurations of 5Ca, »V, ;,Ge, sl, 3sR®

10.23 ¢ Explain the abrupt drops in the ionization ener-
gies shown in Fig. 10.11 between Cd and In am
between Hg and TI.

10.24 » Write down the electron configuration for each of
the six alkali-metal atoms.
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g oo (a) Use the information in Fig. 10.9 to find the

10: ground—state configurations of the following atoms:

s0Zn, goHg, 37RDb, 55Cs. (b) What is the total angular
momentum of each of these atoms?

ee (a) Use the information in Fig. 10.9 to find the
ground-state configurations of the following atoms:
3021, 31Ga, 1Y, 12Cd, 531, saXe, 55Cs. (h) What is the
total spin angular momentum for each of these atoms?
(¢c) What are their total orbital angular momenta?

106

97 ¢ Give the ground-state configurations that the
" atoms of 3O, ;Ne, and 5;Sc would have if the electron

had spin s = 2. (See Problem 10.20.)
2

10.28°° The degeneracies of the levels in hydrogen are 2,8,
18, 32,---. The numbers of electrons in successive
shells of multielectron atoms are 2,8, 8,18,18,32,---.
Given the groupings of levels into shells shown in
Fig. 10.9, explain the similarities and differences be-
tween these two sets of numbers.

sgcTION 10.8 (The Periodic Table)

10.29 ¢ Use the periodic table inside the back cover to write
down the full electron configurations of ;Li, oNe,
12Mg, 16K, 2sNi, and 4Cd. [Hint: That periodic table
gives the configuration of the outer-shell electrons
only; to find the full configuration, you must add the
configuration of the preceding closed-shell element.
For example, for 1,Mg, add the configuration of 1(Ne.]

10.30 ¢ Use the periodic table inside the back cover to find
the full configurations of the following atoms: iron,
silver, iodine, polonium. (See the hint for Problem
10.29, and use the alphabetical list in Appendix C if
necessary.)

10.31 « Use the periodic table inside the back cover to find
the names, atomic numbers, and full electron configu-
rations of the following atoms: Ga, Xe, W, At, Md, Sg.
(See the hint for Problem 10.30.)

10.32 » (a) Find the ground-state configurations of nickel
and copper from the periodic table inside the back
cover. (b) Draw energy-level diagrams, similar to
those in Fig. 10.7, to illustrate these two ground states.
(Note: In Fig, 10.9 we showed the 4s level below 3d
since it fills first. Nevertheless, 4s and 3d are very
close together; as Z increases, the 3d level becomes
almost exactly degenerate with 4s, and 4s can lose
one electron to 3d — as happens in copper.)

10.33 e+ Because of the way that atomic properties vary
smoothly along the rows and columns of the period-
ic table, one can often predict the properties of an
element from the known properties of its neighbors.
(This is how Mendeleev predicted the existence and
several properties of the elements now called scan-
dium, gallium, and germanium.) (a) The ionization
energies of 5yCa and 33Sr are 6.11 eV and 5.70 eV. If
one guessed that ionization energies should change
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linearly as one moves through a group, what would
one predict for the ionization energy of ;sBa? (The
observed value is 5.21 eV.) (b) Use the same argu-
ment to predict the electron affinity of 35Br, given
that ;Cl has electron affinity 3.61 eV and s;I has
3.06 eV. (The observed value is 3.36 eV.) (c) Predict
the radius of the ¢F atom, given that ;N and gO have
radii of 0.075 and 0.065 nm. (The actual value for ¢F
is 0.057 nm.)

10.34 ¢ (a) The electron affinities of ,sFe and »;Co are
0.163 and 0.661 eV. Using arguments similar to those
outlined in Problem 10.33, predict the electron affini-
ty of ,gNi. (The observed value is 1.156 eV.) (b) In the
same way, predict the boiling point of 3,Ge, given that
the boiling point of 4Si is 3540 K and that of 5,Sn is
2876 K. (The observed value is 3107 K.) (¢) Similarly,
predict the melting point of ggRn, given that those of
1K1 and 54Xe are 116 K and 161 K. (The observed
value is 202 K.)

10.35 e« The simple estimation of atomic properties as de-
scribed in Problems 10.33 and 10.34 does not always
work very well. Here is a well-known example where
it is fairly unsuccessful: The electron affinities of 17,Cl
and 35Br are 3.62 and 3.36 eV. Assuming that electron
affinity varies linearly within the groups of the peri-
odic table, what would you predict for the electron
affinity of gF? The observed value is 3.40 eV.

SECTION 10.9 (Excited States of Atoms™*)

10.36 » The ground-state configuration of the lithium atom
is 1s22s'. Give the configurations of the lowest five ex-
cited levels. (See Fig. 10.16, and ignore fine structure.)

10.37 ¢ Give the configurations of the lowest four levels
of a sodium atom. (See Fig. 10.15, and ignore fine
structure.)

10.38 ¢ The spectrum of atomic lithium has a red line at
A = 671 nm, arising from the transition 2p —2s.
On close inspection, this line is seen to be a doublet
of lines separated by 0.0152 nm. What is the fine-
structure splitting of the 2p energy level in lithium?

10.39 » Give the configurations of the lowest six levels of
the He atom.

_.Ii‘ COMPUTER PROBLEM

10.40 e (Section 10.2) If you have not already done it, do
Problem 10.2. What is the potential energy U(r) of an
electron in this electric field? Use any graphing soft-
ware to make a plot that shows U (r) as well as the ex-
pected forms (10.4) and (10.5) for the case that
Z = 4. Does your plot confirm the behavior sketched
in Fig. 10.1?




