12

The Interpretation of Quantum
Mechanics

Throughout this book, we have relied on the Copenhagen inter-
pretation of quantum mechanics. This is the traditional interpre-
tation of the quantum-mechanical formalism. Its main features
were initially sketched by Heisenberg and by Bohr, and its details
were later filled in by many collaborators and disciples of Bohr at
the Institute for Theoretical Physics at Copenhagen. Because this
interpretation provides us with only probabilistic information
about the state of a quantum-mechanical system, and because this
interpretation has some weird aspects that go counter to our intui-
tion, its adequacy has often been questioned. Several other inter-
pretations of quantum mechanics have been proposed, but none
has been judged clearly superior to the Copenhagen interpreta-
tion, which still remains the only widely accepted of all the inter-
pretations of quantum mechanics. Of course, scientific’ issues are
not decided by popularity polls, but the wide acceptance of the
Copenhagen interpretation means that a physicist who wants to
communicate some result or discovery in quantum mechanies will
feel compelled to couch the result in the language of the Copenha-
gen interpretation,
Critics of the Copenhagen interpretation do not challenge the
accuracy of the numerical results calculated from quantum me-
chanics. At a pragmatic level, quantum mechanics works per-
fectly—the numerical results for, say, the eigenvalues of the angu-
lar momentum and the energy of the hydrogen atom are found to
-be in perfect agreement with experiment. But critics challenge
whether the Copenhagen interpretation really gives us the most
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complete, most exhaustive knowledge of a quantum system we can
hope for. For instance, is it really impossible to say anything
about the precise instantaneous position of the electron in the
hydrogen atom and its motion as a function of time? Or is the
inability of quantum mechanics to provide this information an in-
dication of some deficiency of the theory? In the view of some
critics, the probabilistic character of the predictions of quantum
mechanics is held to reflect our ignorance of the details of the
underlying dynamics. Theories that attempt to provide a more
detailed knowledge than provided by the Copenhagen interpreta-
tion are said to contain hidden variables.

The discussion of the interpretation of quantum mechanics
and of hidden variables has received a fresh stimulus in recent
years, because it has become possible to perform an experiment
originally conceived as a Gedankenexperiment by Einstein, Po-
dolsky, and Rosen in 1935. A new theoretical analysis of this Ge-
dankenexperiment by Bell in 1964 established that it could be
used to discriminate between the Copenhagen interpretation and
a wide class of theories with hidden variables, and this encouraged
experimenters to attempt some actual versions of the experiment.
The experimental results fully support the Copenhagen interpre-
tation and contradict theories with hidden variables.

Copenhagen Interpretation

The main features of the Copenhagen interpretation can be briefly
summarized as follows:

1. The state vector |¢) provides a complete characterization of
the state of the system.

9. The state vector tells us the probability distribution for the
result of the measurement of any observable quantity.» This
probability distribution applies to each individual quantum
particle or quantum system.

3. The uncertainty relations indicate the intrinsic spreads in
the values of complementary observables for the individual
quantum particle or quantum system. These uncertainty
relation deny the existence of sharp values of complemen-
tary observables.

4. Measurements produce unpredictable, discontinuous
changes in the state vector, which do not obey the Schro-
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dinger equation. The outcome of a single measurement of
an observable is unpredictable—the outcome can be any of
the eigenvalues within the spread of the probability distri-
bution. During the measurement, the state of the system
collapses into an eigenstate of the observable.

This list of features overlaps, to some extent, with the axioms
of quantum mechanics stated in Chapters 4 and 5. We could in-
clude all of these axioms in our list of features of the Copenhagen
interpretation, but some of these axioms—Tfor instance, the axiom
for the time evolution of the state vector—do not pertain directly
to the interpretation of quantum mechanics, and this is why we
prefer not to include them here. We have used the features of the
Copenhagen interpretation in the preceding chapters. Now we
will discuss them critically.

The fundamental assumption of the Copenhagen interpreta-
tion is that the state vector | (or, in the position representation,
the wavefunction ) provides a complete, exhaustive characteriza-
tion of the state of the system. This means that the state vector
encompasses all that can be said about the state of the system. The
other assumptions and prescriptions of the Copenhagen interpre-
tation are built upon this fundamental assumption.

In contrast to the classical characterization of the state of a
system, where the instantaneous coordinates and momenta give us
a detailed picture of the instantaneous configuration of the system,
the quantum-mechanical characterization by means of the state
vector gives us merely the probabilities for the outcome of mea-
surements that we can perform on the system. For instance, if |E,)
is an energy eigenstate, then |(E,|)|® gives us the probability that
the outcome of an energy measurement is E,. From the probabil-
ity distribution for the different energy eigenvalues, we can calcu-
late the expectation value of the energy; alternatively, we can cal-
culate this expectation value, or average value, according to the
concise formula - -

(E) = (W|H[y) (1)

where H is the energy operator. Similar formulas give us the ex-
pectation values of all other physical observables. Because the
state vector |y, or the wavefunction , determines the expectation
values of all observables, Schrodinger has called the wavefunction
the “expectation-catalog.”
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We must resist the temptation to regard the wavefunction as
some kind of snapshop of the instantaneous configuration of the
system, in the way that, say, the classical wavefunction for a stand-
ing wave on a string is a snapshot of the instantaneous configura-
tion of the string. The quantum-mechanical wavefunction of, say,
an electron in an atom does not give us a picture of the shape of the
instantaneous configuration of matter or of electric charge in the
atom. It merely gives us the probability distribution of the electric
charge; it merely provides us with the means of calculating expec-
tation values. The quantum-mechanical wavefunction makes no
assertions about the instantaneous position of the electron or about
the instantaneous charge distribution in the atom. One of the ad-
vantages of the abstract state vector |¢) over the wavefunction ¢ is
that as long as we deal with the abstract state vector we are un-
likely to fall into the error of imagining the wavefunction as some
kind of actual configuration of electric charge in space.

Quantum mechanics does not supply us with concrete mental
pictures of the behavior of atoms and subatomic particles. Quan-
tum mechanics does not tell us what atoms and subatomic particles
are like; it merely tells us what happens when we perform mea-
surements. As Heisenberg said: “The conception of objective re-
ality . . . evaporated into the . .. mathematics that represents no
longer the behavior of elementary particles but rather our knowl-
edge of this behavior.”? A

The emphasis of the Copenhagen interpretation on measure-
ments and on the procedures for measurements is in accord with
the philosophical doctrines of positivism and operationalism. In
brief, positivism asserts that the only meaningful statements we
can make about a physical system are those that are verifiable by
observation and experiment, and thus the only meaningful physi-
cal quantities are those that are measurable. And operationalism
asserts that the definition of any physical quantity must spell out
the experimental, or “operational,” procedure for measuring the
quantity. According to strict positivist doctrine, the aim of science
is to describe and to predict, but not to explain; speculations about
unobservable and unmeasurable properties are held to be irrele-
vant.

This emphasis on measurements is a strength and also a weak-
ness of the Copenhagen interpretation: strength, since its lack of
commitment to any detailed model of the atomic and subatomic

1 W. Heisenberg, Daedalus, 87, 99 (1958).
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world makes it nearly impregnable; and weakness, since it fails to
satisfy our craving for concrete mental images of atomic and sub-
atomic processes. Of course, we can imagine the wavefunction,
and this can help us to understand the mathematical properties of
; but when you imagine, say, the scattering of an incident proton
wave on a nuclear target, you are not seeing the physical behavior
of the proton, only the mathematical evolution of the wavefunc-
tion.

In the Copenhagen interpretation, the meaning of the quan-
tum-mechanical probability distributions is quite different from
that of the probability distributions familiar from classical statisti-
cal mechanics. When a classical physicist has recourse to a proba-
bility distribution to describe, say, the speed of a molecule in a
gas, he does not mean to deny that the molecule has a perfectly
well defined speed at each instant of time; but he does not know
this speed—he only knows some macroscopic quantities of the
gas, such as the average density, temperature, and pressure.
Hence, in classical statistical mechanics, the probability distribu-
tion for molecular speeds reflects the ignorance of the observer of
the precise microscopic conditions in the gas. This kind of proba-
bility distribution is called an ensemble distribution, since it de-
scribes the average conditions for a large number of molecules in a
gas. In contrast, the quantum-mechanical probability distribution
does not reflect our ignorance of the instantaneous position and
momentum, but rather the non-existence of any well-defined posi-
tion and momentum. The quantum-mechanical system does not
consist of particles with well-defined albeit unknown positions
and momenta, but of “particles” with intrinsically indeterminate
positions and momenta. Thus, the quantum-mechanical probabil-
ity distributions (and the quantum-mechanical uncertainties Ax
and Ap,; see below) refer to an individual particle, not to an en-
semble of particles. An example due to Schrédinger brings this
distinction into clear focus: Consider a particle in an energy eigen-
state of the isotropic harmonic oscillator, say, a particle in the
ground state, with E = $%iw. A classical probability distribution for
this system with well-defined, but unknown, values of the position
and momentum would necessarily require that the distance of the
particle from the origin never exceed the distance at which the
energy $fw equals the potential energy (this is the classical turning
point of the motion); thus, if we were to assume that the particle
had a well-defined instantaneous position and momentum, the
probability distribution would have a sharp cutoff at the classical



Sec. 12.1 / The Copenhagen Interpretation 347

turning point.2 But the quantum-mechanical probability distribu-
tion has no such sharp cutoff—it permits the particle to penetrate
into the classically forbidden region beyond the turning point. (As
we already discussed in Chapter 3, this penetration into a classi-
cally forbidden region leads to no inconsistencies, because, in con-
sequence of the uncertainty relation, any attempt at detecting the
presence of the particle in the forbidden region introduces a large
uncertainty in the energy and blurs the distinction between the
forbidden and the permitted region.) The important lesson we
extract from this example is that the consistency of the Copenha-
gen interpretation demands that the quantum-mechanical proba-
bility distribution be associated with an individual particle.

This raises the question of how we can perform an experimen-
tal measurement of probabilities when we are dealing with a sin-
gle particle or a single system. A single trial, say, a single mea-
surement of the position of a particle with some given
wavefunction, cannot confirm the quantum—mechanical prediction
for the probability distribution of the position. At the most, the
single trial could prove quantum mechanics wrong—if the result
of the single trial is a position that according to quantum mechan-
ics has zero probability. For a comprehensive examination of the
probability distribution, we must repeat the trial again and again,
each time starting with the system prepared in the same way, sO it
has the same initial wavefunction for each trial. In practice, it is
more convenient to prepare a large number of identical copies of
the system, and measure the distribution of positions across this
ensemble of copies. For instance, the measurement of the proba-
bility distribution in the diffraction pattern produced by an elec-
tron incident on a crystal is routinely performed by means of a
beam of many electrons incident on the crystal. The diffracted
electrons emerge from the crystal and strike a fluorescent screen,
where they generate small flashes of light. Each flash of light
amounts to a repeated trial of the experiment. However, under
typical experimental conditions, the electrons arrive at the screen
in quick succession, and we do not notice the individual flashes of
light. What we see on the screen is a more or less steady pattern of

2 Some hidden-variable theories bypass this requirement by modifying the
potential energy. Thus, a hidden-variable theory contrived by Bohm adds to the
ostensible potential energy maw?s? of the harmonic oscillator an extra term de-
pending on the wavefunction W(x) (see Problem 3). The classical turning point is
then at infinity, and the probability distribution has no sharp cutoff.
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bright and dark zones, which give us a direct picture of the proba-
bility distribution (see Fig. 1.2). According to the Copenhagen
interpretation, the probability distribution for such an ensemble of
repeated trials of the diffraction experiment is equal to the proba-
bility distribution for each individual electron, and the width of
this probability distribution across the screen (or, more precisely,
the rms deviation from the mean) is equal to the uncertainty in the
position of each individual electron upon arrival at the screen. Of
course, after the electron interacts with some atom in the screen
and triggers the emission of a flash of light, the uncertainty in its
position will be much smaller (this final uncertainty depends on
the details of the interaction between the electron and the atom).
The state vector |) presents us with a probability distribution
for the possible values for every observable quantity. In general,
this probability distribution spans several, or many, values of the
observable, and therefore the outcome of a measurement of the
observable is afflicted with uncertainties. Only in the exceptional
case that |y is an eigenvector of the observable does this uncer-
tainty disappear—the outcome of the measurement is then certain
to be the eigenvalue. However, the commutation relations of
quantum mechanics place severe restrictions on what observables
can simultaneously be free of uncertainties, that is, what observ-
ables can have simultaneous eigenvectors. For complementary
observables, such as the position x and the momentum p,, whose
commutator has the canonical form [x, p,] = i#, there are no simul-
taneous eigenvectors, and the certainty in one of these observables
implies total uncertainty in the other, in accord with the Heisen-
berg uncertainty relation
h
Ax Apx = § » (2)
The uncertainties Ax, Ap,, and other such quantum-mechanical
uncertainties refer to an individual particle, not to an ensemble of
particles. These quantum-mechanical uncertainties do not arise
from our ignorance of some underlying details of the state of the
particle or from some inadequacy of our measuring devices. In-
stead, the uncertainties reflect the nonexistence of such details;
they reflect an intrinsic spread in the position and the momentum
of the particle. The position and the momentum are not sharply
defined; they are indeterminate.
The uncertainty relations are often called indeterminacy rela-
tions, to distinguish the quantum-mechanical uncertainties from
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ordinary experimental uncertainties arising from imperfections in
the apparatus used in a measurement. To illustrate the distinction
between these two kinds of uncertainties, consider the position
measurement of an electron by means of a fluorescent screen. In
this case, there are two different uncertainties: there is the initial
intrinsic uncertainty of the position of the electron, associated vvith
its initial wavefunction; and there is the ordinary experimental
uncertainty of the measurement associated with the resolution at-
tainable with the fluorescent screen. We can check the ordinary
experimental uncertainty in the measurement of the position of an
individual electron by an immediate repetition of this measure-
ment, say, by means of a second fluorescent screen placed adjacent
to the first (we will assume that the electron has enough energy to
pass through both screens). The electron will then trigger the
emission of a flash of light in the second screen, and the difference
between the average positions of the flashes triggered in the first
and the second screens tells us the ordinary experimental uncer-
tainty. Note that this experimental uncertainty is never smaller
than the quantum-mechanical uncertainty associated with the final
wavefunction of the electron, after the measurement (in the best
conceivable measurement, the experimental uncertainty attains
the level of the final quantum-mechanical uncertainties). When-
ever we perform a measurement, we must always make a careful
distinction between these different kinds of uncertainty.

The Heisenberg uncertainty relation for the position and the
momentum of a particle implies that classical determinism fails—
the initial values of the position and the momentum (or velocity) of
a particle cannot be used to predict the position and momentum at
a later time. To make such a prediction for the motion of a particle,
the classical physicist would need precise initial values of position
and momentum: but Eq. (2) forbids simultaneous precise values of
these two observables.

Although quantum mechanics lacks the simple determinism
of classical physics, it retains a form of determinism in the state
vector |), which evolves in time according to the (general) Schro-
dinger equation,

hod
ST v = Hw 3)

This equation expresses determinism and causality, since it per-
mits us to predict the state vector at any later time from a given
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state vector at the initial time. Thus, in the words of Born: “The
motion of particles is subject [only] to probabilistic laws, but the
probability itself evolves in accord with causal laws.”?

12.2 Measurement and the Collapse
of the Wavefunction

The weirdest feature of the Copenhagen interpretation is that it
requires that the wavefunction suffer a discontinuous, unpredicta-
ble change during the measurement. Consider, for instance, the
impact of an electron on the fluorescent screen in the electron-
diffraction experiment. This impact and the flash of light released
in it constitute an (approximate) measurement of the position of
the electron. Just before this measurement, the wavefunction was
spread out all over the screen; immediately after the measure-
ment, the electron position is known to lie within some small spot
on the screen, and the wavefunction must therefore have an extent
no larger than this spot. Thus, during the measurement, the wave-
function suffers an unpredictable collapse, or reduction. The col-
lapse is unpredictable, since we have no way of knowing onto
what part of the screen the wavefunction will collapse—we know
only the probability distribution of the spots on which the wave-
function collapses, that is, the probability distribution of positions
for the electron on the screen.

Note that a single measurement tells us very little about the
wavefunction before the measurement. If 2 measurement finds an
electron at some spot, this tells us only that the wavefunction be-
fore the measurement was different from zero at that spot. But the
measurement tells us much about the wavefunction just after the
measurement. In general, a precise measurement of an observ-
able collapses the wavefunction into an eigenstate of that observ-
able. Thus, the wavefunction after such an ideal measurement is
precisely known. For instance, an ideal measurement of the posi-
tion of an electron collapses the wavefunction into a delta function
(the practical measurement with a fluorescent screen has a limited
precision, given by the experimental uncertainty; and the wave-
function after the measurement is not a delta function, but a wave
packet of a width of a few A). A measurement of the energy of an
electron collapses the wavefunction into an eigenstate of energy.

3 M. Born, Z. Phys., 38, 803 (1926).
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A measurement of the spin collapses the wavefunction into an
eigenstate of spin, and so on. The apparatus plays a crucial role in
selecting the kind of eigenstate into which the wavefunction col-
lapses. The apparatus dictates whether the system will collapse
into some eigenstate of position, or of momentum, or of spin, and
so on. But, of course, the apparatus does not dictate which specific
eigenstate of position, or of energy, or of spin, and so on, the
system will collapse into; this aspect of the collapse is unpredict-
able.

Bohr has emphasized that quantum mechanics does not de-
scribe quantum systems per se; instead, it describes a whole phe-
nomenon, which includes, in an inextricable way, both the quan-
tum system and the apparatus used to measure it: “... an
independent reality in the ordinary physical sense can neither be
ascribed to the phenomenon nor to the agencies of observation.”*
According to the Copenhagen interpretation, quantum systems in
themselves do not have sharply defined attributes, only diffuse
potentialities, which are capable of becoming sharply defined
when we perform suitable measurements. The attributes of a
quantum system depend on the apparatus used to measure them,
and they exist only in relation to this apparatus. Thus, the attri-
butes are a joint property of the system and the apparatus. This
intimate symbiotic relationship between system and apparatus im-
plies a break with naive realism, according to which the attributes
of a physical system belong to the system in itself, and they are
supposed to exist independently of the environment surrounding
the system. However, in the view of most physicists, the antireal-
ism of the Copenhagen interpretation extends only to the attri-
butes of physical systems, not to the physical systems themselves.
The Copenhagen interpretation denies the realism of contingent
attributes, but it does not deny the realism of physical systems or
of the material world. :

In an ideal measurement, the collapse is instantaneous—at
one instant the wavefunction has one configuration, at the next
instant it has collapsed to a new, drastically different configura-
tion. Such an instantaneous collapse would seem to conflict with
the theory of Special Relativity, according to which signals can
never exceed the speed of light (if signals can be sent with a speed
exceeding the speed of light, then you can send messages into
your own past, in blatant violation of causality). But it is easy to

4 N. Bohr, Quantum Theory and the Description of Nature, Chapter II.
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see that the collapse process cannot be used to transmit messages
from one observer to another. For instance, consider an electron
wave that has spread out over a very large volume, say several light
years, and suppose that an observer at one end of this electron
wave detects the electron on her fluorescent screen and brings
about the collapse of the wavefunction. This means that it will
thereafter be impossible for another, distant observer to detect the
electron on his fluorescent screen; but this does not give this other
observer a message of any sort, since he has no way of knowing
that his attempts at detecting the electron have been condemned
to failure. The other observer is now on a fool’s errand—he can
continue to grope around searching for the electron, but he is
unable to conclude that the electron wave has collapsed until he
has explored every volume element in space, including the vicin-
ity of the first observer, where, of course, he will finally get the
message.

The change of the wavefunction during the collapse is not
governed by the Schrédinger equation. As we will see in Section
12.3, the Copenhagen interpretation brazenly postulates that this
collapse is merely a mathematical procedure, not a physical pro-
cess. We might be tempted to suppose that the collapse is pro-
duced by the dynamics of the interaction of the measured system
with the measuring apparatus. But such an interaction, if treated
according to the time evolution specified by the Schrodinger equa-
tion, is not by itself enough to bring about the collapse of the
wavefunction. For instance, when the diffracted electron wave
strikes the fluorescent screen, it interacts with all the atoms in the
screen and scatters off them with some loss of energy (inelastic
scattering). This interaction of the electron with the atoms in the
screen tells us the probabilities for the emission of flashes of light
by the atoms, but it does not tell us which of the many atoms on the
screen will actually emit the light, and thereby signal the collapse
of the electron wavefunction into its vicinity. Thus, although the
interaction of the system and the measuring apparatus is required
for the measurement to be possible, the collapse is not produced
by this interaction.

It might be argued that single atoms, or groups of atoms, in the
fluorescent screen do not constitute a macroscopic measuring de-
vice, and that therefore the collapse is to be expected to occur only
at the next stage of the measurement process, when the flash of
light from the screen triggers a macroscopic measurement device,
such as a photomultiplier tube or the human eye. The interaction
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of an electron with the atoms of a fluorescent screen is compli-
cated, and the ensuing complete chain of events is difficult to
analyze in detail. Instead, let us deal with a different example of
measurement, in which the interactions are more obvious, and the
evolution of the joint system—apparatus state vector can be exam-
ined in some detail.

Consider the measurement of the vertical component of the
spin of an atom with the Stern—Gerlach apparatus shown in Fig.
12.1. In this measurement, we send the atom through the inho-
mogeneous magnetic field of a magnet, which displaces the trajec-
tory of the atom vertically upward if the spin is up, and vertically
downward if the spin is down. Two detectors serve to discover
whether the atom has taken the high road or the low road. In the
original Stern—Gerlach experiment, the detector was simply a pho-
tographic plate. Butsuch a device absorbs the atom and precludes
any further measurements. For our purposes, it will prove more
instructive to use some detector that permits the atom to proceed
on its trajectory. A suitable detector might consist of a laser beam
that intersects the trajectory and a photomultiplier tube aimed at
the intersection. If the atom crosses the laser beam, it scatters a

shaped magnet

Fig. 12.1 Stem-Gerlach apparatus for the measurement of the vertical
component of the spin.
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few photons, which reveal the presence of the atom when they
trigger the photomultiplier tube. Since the resolution of this sim-
ple optical detector is of no concern to us, we can use photons of
long wavelength, which hardly disturb the atom at all. Note that
this apparatus contains two basic elements: a discriminating de-
vice (the inhomogeneous magnetic field) that sends the atom one
way or another according to the vertical component of its spin, and
an amplifying device (the photomultiplier) that produces a macro-
scopic pulse of current when triggered by an incident atom.
These two basic elements are quite typical of most measuring
devices used for measurements on quantum systems.

We can easily see that as long as the atom, the apparatus, and
their interactions are governed by the Schrédinger equation, a
collapse of the state vector is not possible. We assume that the
atom has spin 4 and that the initial state of the atom is some super-
position of the spin-up and spin-down states, say, the superposi-
tion

1
"\/—Q(H) +1-) (4)

which corresponds to an initial state of horizontal spin, in the +x
direction [see Eq. (9.33)]. According to the usual rules for calcu-
lating probabilities for the outcome of a measurement, this initial
state of the atom has a probability of 4 for spin up, and # for spin
down. The initial state of the detectors, before the measurement,
is that neither of them has been triggered; we designate this state
by |[none). The initial state vector for the joint atom—detector sys-
tem is then '

99 = = (14) + =) lnone) = Z=1+) Inone) + 75 1) fnone)  (8)

Note that in this state vector we have not bothered to indicate
explicitly the state of translational motion of the atom. Within the
approximations of the Stern—Gerlach experiment, the translational
motion of the atom proceeds according to the classical mechanics,
and the upward or downward displacement of the trajectory for the
spin-up or the spin-down state is completely determined by the
(classical) parameters of the apparatus. Thus, there is a unique
correspondence between spin states and trajectories, and we can
pretend that the spin states |+) include an implicit specification of
translational states.
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The atom passes through the apparatus and interacts with the
detectors. During this interaction, which is described by some
suitable interaction Hamiltonian, the spin-up state triggers the up-
per detector, but not the lower; we designate the corresponding
state vector of the detectors by |upper). The spin-down state trig-
gers the lower detector, but not the upper; we designate the corre-
sponding state vector by [lower). Thus, if the initial state were one
or the other of the states of definite spin, the interaction during the
measurement would produce the following transition to a definite
final state:

[+) |none) — |+) |upper) or |—) |none) — |—) |lower) (6)

Since the Schrodinger equation is linear, the superposition (5) of
initial states will therefore produce a corresponding superposition
of final states:

9 = 5 1+) luppen) + =~ [lower) )

Thus, the result of the interaction is not a collapse into one or
another of the states of definite spin up or down and a definite
response from the detector, but a superposition in which the spin-
up and spin-down states are correlated with the detector states.
But such a superposition cannot be regarded as a completed mea-
surement, since it fails to make a definite choice between the
spin-up and spin-down states. In fact, the state vector (7) is merely
the initial state vector (5) translated in time. With a slight modifi-
cation of the apparatus, it is even possible to restore the initial
horizontal spin state of the atom by a further translation in time. If
we add a second magnet to the apparatus in tandem with the first
and with a reversed magnetic field, then the trajectory of the atom
will suffer a reversed displacement in the second magnet, and the
initial spin state of the atom will be restored when the upper and
the lower trajectories again merge into one.> Such a restoration of
the horizontal spin state demonstrates that our Stern—Gerlach ex-
periment cannot be regarded as a completed measurement of the
vertical component of the spin.

5 In order to achieve a complete restoration of the initial state vector, we also
have to reset the detectors, so their state vector is restored to |none). Since the
detectors are macroscopic devices, a restoration to the exact initial quantum state
is difficult, perhaps impossible. Some versions of the Copenhagen interpretation
use lack of reversibility as a criterion for what constitutes a completed measure-
ment (see the next section).
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Although the state vector (7) does not, in itself, provide an
adequate description of the outcome of a measurement, we might
hope that we can bring about its collapse into one or another of the
two states of this correlated superposition by performing a mea-
surement on the joint atom—apparatus system. For this purpose,
we might employ a secondary apparatus that observes the primary

"apparatus and checks which detector has triggered. The usual

rule for calculating probabilities tells us that such a measurement
on the state vector (7) has a probability of 4 for the result |+)
lupper) and a probability of } for the result |—) [lower); thus, the
probabilities for the outcomes of the secondary measurement are
consistent with the probabilities for the primary measurement that
we attempted with the Stern—Gerlach apparatus. However, if the
secondary apparatus and its interaction with the primary apparatus
are, again, governed by the Schrédinger equation, then this at-
tempt at a measurement yields, again, a superposition:

ly) = % |+) |upper) |upper confirmed)

+ % | =) |lower) |lower conﬁrmed} (8)
From this example we see that stacking one apparatus on top of
another does not bring about the desired collapse of the state vec-
tor.

The absence of collapse in any system governed by the Schro-
dinger equation—and the concomitant impossibility of bringing a
measurement to completion, no matter how many apparata are
stacked one on top of another—is called von Neumann’s catastro-
phe of infinite regression. This absence of collapse was estab-
lished by von Neumann, who made the first rigorous examination
of the mathematical foundations of quantum mechanics. Von
Neumann decided that the collapse of the state vector during mea-
surement must be inserted into quantum mechanics as a separate
axiom. If we arrange any number of apparata in a sequential stack
(with a primary apparatus, a secondary apparatus, a tertiary appa-
ratus, etc.), in which each apparatus checks on the apparatus rank-
ing below it and is, in tun, checked by the apparatus ranking
above it, we must postulate that the collapse of the state vector
occurs somewhere in this stack. As in the cases of one or two
apparata discussed in connection with Egs. (7) and (8), the proba-
bilities for the different outcomes of measurement are unaffected
by whether we postulate that the collapse occurs in the primary
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apparatus, or the secondary apparatus, or the tertiary apparatus,
etc.

Apart from its inadequacy for describing the outcome of a
measurement, the state vector (7) has some weird properties. This
state vector represents an ambivalent state, in which the detectors
are in a schizoid superposition of having triggered and not having
triggered. Such superpositions are a familiar feature of the atomic
or subatomic world, and since we have no direct experience with
that world, our intuition is willing to accept such superpositions in
that world. But in Eq. (7) we encounter such a superposition in
the macroscopic world, where it directly clashes with our intui-
tion.

The weirdness of such superpositions of macroscopic states is
brought to an extreme in a celebrated Gedankenexperiment con-
trived by Schrédinger:®

A cat is locked into a steel chamber, along with the following diabolical
device (which one must secure against direct intervention by the cat):
In a Geiger counter there is a minuscule amount of radioactive sub-
stance, so small, that in the course of one hour perhaps one of the atoms
decays, but also, with equal probability, perhaps none; if it happens, the
counter tube discharges and through a relay releases a hammer which
shatters a small flask with hydrocyanic acid. If one has left this entire
system to itself for an hour, one would say that the cat still lives if
meanwhile no atom has decayed. The first atomic decay would have
poisoned it. The i)-function of the entire system would express this by
having in it the living and the dead cat (pardon the phrase) mixed or
smeared out in equal parts.

Although such a schizoid superposition of a live-cat state vec-
tor and a dead-cat state vector does violence to our intuition, we
cannot disprove it by any experiment. As soon as we open the
chamber, or use any measuring device to detect the life signs of
the cat, the state vector collapses into either the live-cat configura-
tion or the dead-cat configuration, with equal probabilities. Thus,
we can never “see” the cat in the superposed state. Instead, the
act of observation or of measurement does something very drastic
to the state of the cat—it flips the cat into either the live state or the
dead state.

Wigner has added an extra wrinkle to this Gedankenexperi-
ment by proposing that we omit the cyanide capsule and that we

6 E. Schradinger, Naturwissenschaften, 23, 807 (1935); a translation of this
paper appeared in Proc. Am. Philos. Soc., 124, 323 (1980).
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replace the cat by a human volunteer, Wigner’s friend. We let
Wigner's friend watch the Geiger counter for a while, and then
open the chamber, and ask her to tell us what has happened. If
Wigner's friend tells us that the Geiger counter clicked some time
ago, we would presumably have to conclude that her presence in
the chamber was enough to collapse the state vector, and that our
opening of the chamber had no further effect on the state vector.

12.3 Alternative Interpretations of the Collapse

Physicists have made a variety of attempts at resolving the conun-
drum posed by the collapse of the wavefunction during measure-
ment. Most of these attempts accept the main features of the Co-
penhagen interpretation (listed in Section 12.1), but propose
different ways of dealing with the collapse. Here we will briefly
discuss four such attempts: the orthodox Copenhagen picture, the
popu7lar picture, the subjective picture, and the many-worlds pic-
ture.

Orthodox Copenhagen Picture. This is the picture conceived
by Bohr and by Heisenberg.? An essential feature of this picture is
that the results obtained in any experiment are to be described in
classical terms. Bohr argued that such a classical view of experi-
mental results is imperative to enable physicists to communicate
these results to each other: “However far the phenomena tran-
scend the scope of classical physical explanation, the account of all
evidence must be expressed in classical terms. The argument is
simply that by the word ‘experiment’ we refer to a situation where
we can tell others what we have done and what we have learned
and that, therefore, the account of the experimental arrangement
and of the results of the observations must be expresséd in unam-
biguous language with suitable application of the terminology of
classical physics.”® Thus, the apparatus is supposed to indicate
the result of a measurement with a well-defined pointer position

7 There is no general agreement on names for these and other different pic-
tures, or even on the number of different pictures.

8 The following discussion is based mainly on the exposition of the Copenha-
gen interpretation given by Heisenberg in his Physics and Philosophy, Chapter
I1I. Bohr never gave such a systematic exposition of his views; but the isolated
statements that he made are consistent with Heisenberg’s views.

9 N. Bohr, Atomic Physics and Human Knowledge, p. 39.
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on a scale or a well-defined digital readout, without any significant
uncertainty.

The orthodox Copenhagen picture does not claim that the
laws of quantum physics are inapplicable to the apparatus; on the
contrary, Bohr was quite aware that quantum physics is ultimately
responsible for all the properties of the materials out of which the
apparatus is constructed, and, in his refutation of the Gedankenex-
perimente of Einstein (see Section 12.4), he did not hesitate to
apply the uncertainty relations to macroscopic pieces of equip-
ment. Buta “good’” apparatus is supposed to be designed in such
a way that quantum uncertainties in the readout are insignificant.
According to Bohr’s criterion for a “good” apparatus, if a superpo-
sition of different macroscopic apparatus states—such as Eq. (7)—
where to occur, it would demonstrate an inadequacy in the design
of the apparatus, and the inability of this apparatus to bring the
measurement to completion.

In the orthodox Copenhagen picture, the collapse of the wave-
function is not a physical process, merely a mathematical proce-
dure, or a bookkeeping procedure. The wavefunction is not a ma-
terial entity, merely a mathematical construct. The wavefunction
is the expectation catalog that characterizes the quantum system.
This catalog lists all the possible outcomes for all the possible
experiments we might perform on the system; it tells us that if we
perform some experiment, then the outcome will be this or that,
with this or that predicted probability. As long as we do not per-
form any experiment on the system, the expectation catalog
evolves continuously in time, according to the Schrédinger equa-
tion. But if we perform an experiment on the system and measure
some observable, the expectation catalog changes discontinu-
ously. During the measurement, one of the possible outcomes
listed in the expectation catalog becomes the actual outcome, and
all the other outcomes are rejected. This means that the expecta-
tion catalog must suddenly be altered—all the entries in the cata-
log must be deleted, except, of course, the one entry that became
actual. But this sudden alteration, or collapse, of the expectation
catalog is merely a reflection of our sudden change of knowledge.
The only definite physical change during the measurement is the
change that occurs in the apparatus, which switches from one well-
defined state to another.

Both Bohr and Heisenberg have emphasized that the wave-
function does not tell us what actually happens in the quantum
system between one measurement and the next; it does not pro-
vide a history of events in the quantum system. The wavefunc-
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tion, in conjunction with the Schrédinger equation, merely tells us
that if we perform a given experiment on the system at one time
(say, a measurement of the x component of the spin of an atom),
and some other given experiment at a later time (say, a measure-
ment of the z component of the spin), then the outcome of the
second experiment is probabilistically related to the outcome of
the first. Thus, the mathematical machinery of quantum mechan-
ics provides us with probabilistic connections between one exper-
iment and the next, but it does not provide us with a mental pic-
ture of what happens in between (as already mentioned in Section
12.1, we must not confuse a mental picture of the time evolution of
the wavefunction with a mental picture of the quantum system
itself). Quantum mechanics tells us nothing about the quantum
system itself, only about what happens in measurements. In
Bohr's words: “The formalism of quantum mechanics is to be con-
sidered as a tool for deriving predictions ofa . . . statistical charac-
ter as regards information obtainable under experimental condi-
tions described in classical terms.” ¢

The orthodox Copenhagen interpretation insists on a sharp
dichotomy between quantum system and apparatus. We must be-
gin any description of an experiment by specifying the system to
be measured, the apparatus with which it is to interact, and the
dividing line, or the Heisenberg cut, between the system and the
apparatus. The state of the quantum system is characterized by its
wavefunction, but the state of the apparatus (or, at least, the state of
the readout end of the apparatus) is characterized by well-defined
classical parameters.

Although we must draw a sharp line between the quantum
system and the apparatus, we have considerable freedom in just
where we draw this sharp line. As is clear from the discussion of
Eqs. (7) and (8), the probabilities for outcomes of measurements
are not altered when we extend our quantum system so as to in-
clude some part of the apparatus with which it interacts during the
measurement. For instance, if we attempt to detect a photon with
a photomultiplier tube, we can regard the photon as the system
and the photomultiplier tube as the apparatus. Alternatively, we
can regard the photon and some portion of the photomultiplier
tube as the system and the remainder as the apparatus. In the
photomultiplier tube, the incident photon ejects a photoelectron
from the faceplate, this electron strikes the first dynode and ejects

10 N. Bohr; see Jammer, The Philosophy of Quantum Mechanics, p. 204.
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several electrons; each of these strikes the second dynode and
ejects more electrons, and so on. We can draw the dividing line
between system and apparatus at the faceplate, or at the first
dynode, or at the second, and so on. Depending on our choice of
dividing line, the measured system will consist of a photon or a
photon and one or several electrons; accordingly, the wavefunc-
tion of the system will have to include the wavefunction of these
electrons. However, the Copenhagen picture does not permit us
to shift the dividing line all the way to the output end of the
photomultiplier, where a classical pulse of current emerges. Ac-
cording to Bohr, the classical mode of description becomes com-
pulsory by the occurrence of an irreversible process of amplifica-
tion; this brings the measurement to completion. This criterion
for the completion of a measurement has been enthusiastically
advocated by Wheeler who declared: “A phenomenon is not yet a
phenomenon until it has been brought to a close by an irreversible
act of amplification, such as the blackening of a grain of silver
bromide emulsion or the triggering of a photodetector.”!!
Wheeler has emphasized that a decisive test for the completion of
a measurement is the registration of the information acquired in
the measurement, in the form of a permanent, indelible record.

In the Gedankenexperiment of Schrodinger’s cat, the orthodox
Copenhagen interpretation claims that the quantum-mechanical
wavefunction collapses when the Geiger counter makes a mea-
surement on the radioactive substance, and therefore the state of
the Geiger counter (and the state of the cat) never forms a superpo-
sition of two macroscopically different states. At each instant, the
Geiger counter either performs an irreversible act of amplification
or does not perform such an act, that is, the Geiger counter adopts
either a definite state of discharge or a definite state of no dis-
charge. This means that the Geiger counter acquires information
about the radioactive decay, and brings about the collapse of the
wavefunction of the radioactive substance. The human observer
is not required to bring about the collapse. When the observer
opens the chamber, he receives the information about the col-
lapsed wavefunction; but since this information was already avail-
able in the output of the Geiger counter, he produces no further
collapse of the wavefunction.

Although the criterion of irreversible amplification for the

7. A. Wheeler in Quantum Theory and Measurement, edited by J. A.
Wheeler and W. H. Zurek, p. 185.
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are also orthogonal, since the triggering of one detector has no
associated probability for triggering of the other detector (if the
triggering of one detector tends to produce a triggering of the other
detector, there is a defect in the design of the electric connections
in the apparatus, and the experimenter must repair the appa-
ratus). Thus, the last two terms in Eq. (10) vanish, and the first two
terms reduce to

(|R|Y) = 3(+[R[+) + (= |R[-)) (11)

This result is the same as what we obtain if we take the expectation
value of R for the collapsed state vector |+)|upper) and for the
collapsed state vector |—)|lower), and we average these two possi-
ble expectation values. We therefore reach the conclusion that, on
the average, for repeated measurements, the expectation value of R
is the same as in the Copenhagen picture. Thus, although for each
individual measurement, the collapsed state vectors |+)|upper)
and |—)|lower) differ from the superposed state vector (9), we can-
not detect this difference experimentally, because the average ex-
pectation values for repeated measurements are indistinguishable.

Exercise 1. The calculation leading to Eq. (11) was based on the simple
initial state vector (5), with equal coefficients for the spin-up and spin-
down states. Repeat the calculation for a general initial state, consisting
of a superposition of spin-up and spin-down states with arbitrary coeffi-
cients ¢; and cs. Show that the expectation values {(|R|¢) is, again, an
average of the two terms given in Eq. (11), but with weights lc1}? and
lca|2. Thus, the general result is in agreement with the Copenhagen in-
terpretation.

This means that in the popular picture there is collapse with-
out collapse: the state vector does not really collapse, but the
results for expectation values are the same as though it had col-
lapsed. When we want to calculate an expectation value, we can
therefore use collapse as a shortcut. As Eq. (11) shows, we can
omit the state vector of the apparatus in our calculation, and we
can pretend that the state vector of the system has collapsed to |+)
or to |—). This shortcut always yields the same result as the honest
calculation with the true, uncollapsed joint state vector given in
Eq. (9).

From Eq. (10) we see that what permits the uncollapsed state
vector to mimic an average calculated from the collapsed state
vectors is the cancellation of the last two terms in this equation,
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that is, the off-diagonal terms. A somewhat different version of the
popular picture attempts to achieve such a cancellation by exploit-
ing unpredictable, random phase differences that are supposedly
introduced into the state vector for the system when it interacts
with the apparatus during measurement.!? This version of the
popular picture argues that the microscopic quantum state of the
apparatus is not known, and is not reproducible from one repeti-
tion of the measurement to the next; even if we “reset” the appa-’
ratus for each repetition of the measurement, there will be uncon-
trollable and unpredictable fluctuations in its microscopic
quantum state. When the measured system interacts with this ap-
paratus, the different superposed parts of its state vector acquire
different, random phase factors, which make the different parts in
the superposition incoherent. But an incoherent superposition of
several state vectors is equivalent, on the average, to an ensemble
of collapsed state vectors. We can understand this equivalence
between an incoherent superposition and an ensemble of col-
lapsed state vectors by means of our simple example of measure-
ment of the spin of an atom in a Stern—Gerlach experiment. The
initial state vector of the atom [see Eq. (4)] is a coherent superposi-
tion of the spin-up and spin-down states. If the interaction with
the apparatus inserts extra, random phase factors into this superpo-
sition, we obtain a final state vector

|¢>=%|+>+%I—> (12)

Such a superposition with random phase factors is called a mix-
ture. According to Eq. (12), the expectation value of any arbitrary
operator R is then

WIRIY) = 5 (+IRI+) + 5 (~IRI-)

ei(al —aeg) ei(az-al)

9 <_|R|+) + 9

& (+IR[-) (13)

For random phases a; and ag, the factor ef®~% averages to zero
when we perform the measurement repeatedly, and therefore the
average value of (13) over repeated measurements is simply

IR = 3 (+E]+) + (~[RI-) 1)

12 D. Bohm, Quantum Theory, Chapter 22, Sections 6—12.
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completion of a measurement and the collapse of the wavefunction
seems quite plausible, it is fraught with ambiguities. In a photo-
multiplier tube the amplification increases by stages. At what
stage of this process of successive amplifications with successively
increasing irreversibility will we attain sufficient amplification
and sufficient irreversibility for the completion of the measure-
ment? Furthermore, the amplification process spans some time,
and this raises the question of whether perhaps the collapse of the
wavefunction is also spans some time, which would mean that the
collapse is not truly discontinuous.

Popular Picture. Physicists have a deep predilection for con-
tinuity in nature (Natura non facit saltus), and they tend to be
uncomfortable with the discontinuous collapse and with the some-
what capricious dichotomy between measured system and appa-
ratus demanded by the orthodox Copenhagen picture. The popu-
lar picture is an alternative to the orthodox Copenhagen picture; it
is favored by many, perhaps by most, of the physicists of today. In
the popular picture, there is no collapse. The state vector evolves
continuously at all times, according to the Schrodinger equation.
Both the system and the apparatus are treated quantum-mechani-
cally, and they are described by a joint state vector. A measure-
ment is regarded as an interaction between the system and the
apparatus, as in our example of the Stern—Gerlach experiment of
Section 12.2. During such an interaction, the state vectors. of the
system and the apparatus become correlated, and the joint state
vector forms a superposition of these correlated state vectors.
Thus, in our example of the Stern—Gerlach experiment, the result
of the measurement is the joint state vector

lp) = % |+)|upper) + % =) |l§wer) ' 9)

Consider, now, the expectation value of any operator R that
acts on the spin states (but not on the apparatus states). According
to the usual prescription for the calculation of an expectation
value, :

(W|R|y) = 3((+|R|+) (upper|upper) + (—|R|-) (lower|lower)
+ (+|R|-) (UPperllower) + (—|R]+) (lower|upper)) (10)

The two apparatus states are, of course, normalized, with (up-
per|upper) = 1 and (lower|lower) = 1. But the apparatus states
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Note that here, as in Eq. (10), the off-diagonal terms have can-
celed. We therefore, again, reach the conclusion that, on the aver-
age, for repeated measurements, the expectation value of R is the
same as for the Copenhagen picture.

The cancellation of off-diagonal terms by random phases [Eq.
(13)] seems simpler and more straightforward than the cancel-
lation by orthogonality of apparatus states [Eq. (10)]. However,
the random-phase scheme suffers from a fatal defect. The phases
must ultimately arise from the interactions between the system
and the apparatus. If we want to calculate these phases, we must
begin with an initial joint system—apparatus state vector, such as in
Eq. (5), and we must investigate its time evolution during the
interaction. The result will then be a correlated joint system—ap-
paratus state vector, such as in Eq. (7), with extra, random phases.
But this state vector cannot be factored into a product of a system
state vector of the form (12) and some apparatus state vector.
Thus, interactions cannot lead to a final state vector of the form of
Eq. (12) for the system after the measurement.

Although random phases by themselves do not provide a consis-
tent picture of the collapse, random phases could possibly play an
ancillary role in suppressing interference effects in the correlated
joint system—apparatus state vector given in Eq. (9). One diffi-
culty with this state vector is that, to the extent that the system—
apparatus interaction is reversible, the state vector (9) could possi-
bly evolve back into the initial state vector (5). But if the two
terms in the state vector (9) acquire extra, random phase factors e
and e, then the measurement becomes irreversible. Once the
system has acquired random phases, we have lost essential infor-
mation about the state vector, and we cannot reverse the evolution
of the state vector in time and return to the initial state. Thus, the
picture of random phases provides us with an explicit model of
how irreversibility might enter the measurement process.

Subjective Picture. Another proposal for the collapse is that it
is produced in the mind of the observer, by the intervention of the
observer’s consciousness. This notion was first proposed by von
Neumann. As we saw in the preceding section, no apparatus gov-
ermed by the Schrédinger equation can bring about the collapse,
and neither can a stack of apparata arranged to check on each
other. However, experience tells us that if a human observer is
looking at one of the apparata in the stack, he always perceives the
apparatus in a definite state. This forces us to accept that the col-
lapse occurs, somehow, no later than in this observed apparatus or,
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at the most, no later than within the human observer. Since any
apparatus is built of atomic or subatomic pieces, it presumably
obeys the Schrodinger equation, and is free of collapse. As a last
resort, von Neumann therefore suggested that the collapse occurs
when the signals from the apparatus register in the observer’s con-
sciousness. This picture of the collapse process was adopted by
London and Bauer!® and by Wigner,'4 who saw in it the resolution
of the conundrum posed by the Gedankenexperiment of Wigner's
friend (see Section 12.2). Wigner proposed that the collapse is
brought about by some (unknown) nonlinear process whenever
the quantum system interacts with the consciousness of an ob-
server.

But this proposal raises some awkward questions. Exactly
what is meant by “consciousness”? What level of consciousness is
sufficient to bring about collapse? Is human consciousness re-
quired, or is that of a cat or of a mosquito sufficient? Some of these
questions can be bypassed by postulating that there is only one
consciousness (my own) in the entire universe. This is the philo-
sophical doctrine of solipsism. Itis logically unexceptionable, but
it is viewed with distaste by most physicists, whose scientific train-
ing tells them to be cautious about accepting claims made by one
observer alone.

Many-Worlds Picture. Another, radically different treatment
of the collapse problem is the many-worlds picture of Everett.!
In this picture, as in the popular picture, there is no collapse, and
the state vector evolves according to the Schrodinger equation at
all times. But the many-worlds picture differs from the popular
picture in that it includes the observer as part of the quantum-
mechanical system. Thus, the many-worlds picture eliminates the
dividing line (Heisenberg cut) between the observer and the appa-
ratus, whereas the popular picture implicitly retains this dividing
line. The interaction between measured system, apparatus, and
observer produces a joint state vector consisting of a superposition
of correlated joint state vectors. For instance, in the example of
the Stern—Gerlach experiment in Section 12.2, the state vector for

13 F. London and E. Bauer, La théorie de U'observation en mécanique quan-
tique (Hermann, Paris, 1939). Translated in Quantum Theory and Measurement,
edited by J. A. Wheeler and W. H. Zurek.

M E Wigner, Symmetries and Reflections, p- 183.

15 4, Everett, Rev. Mod. Phys., 29, 454 (1957).
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the joint atom—apparatus—observer system after the measurement
is a correlated joint state vector of the form given in Eq. (8), where
we now regard the states |upper confirmed) and |lower confirmed)
as states of the observer. The many-worlds interpretation insists
that such a schizoid superposition with two or more terms, or
“branches,” with different observer states, is the correct descrip-
tion of the outcome of the measurement. The two terms in the
superposition (8) are interpreted as one branch in which the appa-
ratus has detected spin up and the observer has seen the apparatus
detect spin up, and one branch in which the apparatus has de-
tected spin down and the observer has seen it detect spin down.
Thus, in each branch the state of the observer is consistent with
the state of the apparatus, and in each branch the observer is un-
aware that something different has happened in the other branch,
or even that there is another branch.

Although all of the branches exist simultaneously, the cloned
observers in the individual branches do not interact,!® and they
remain forever unaware of each other. The cloned observers ef-
fectively inhabit separate worlds. Whenever there is a measure-
ment, the history of the world splits into two or more branches,
corresponding to the different outcomes of this measurement.
Note that in the many-worlds picture, any measurement-like inter-
action occurring anywhere gives rise to new branches; thus the
_ universe is continually splitting into a myriads of branches, and
each of us is continually splitting into myriads of clones, even
when the measurements are not being performed in our immedi-
ate vicinity.

In the many-worlds picture, we cannot directly interpret the
coefficient 1/V2 in Eq. (8) as probability amplitudes, since there is
no external (outside-the-universe) observer who can measure the
state of the system. When the observer is in the state |upper eon-
firmed), he is not aware of the other state, or of the coefficients
1/V2. So how can he obtain probabilities in measurements? To
answer this question, the many-worlds picture examines what hap-
pens if the observer performs a sequence of repeated measure-
ments and records (or remembers) the results, Each measurement
generates a new branch of the world, and after all the repeated

16 The matrix element of the Hamiltonian is zero between any two distinct
macroscopic states; if this were not so, then the Hamiltonian could produce transi-
tions from one state of the apparatus or observer to the other, that is, it could
change what the apparatus has detected or what the observer has seen.



