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6 The harmonic oscillator

6.1 The harmonic oscillator potential

We know from our experience with classical mechanics that a particle of mass m subject
to a linear restoring force F(x) = —kx, where  is the force constant, results in one-
dimensional simple harmonic motion with an oscillation frequency. w = /k/m. The
potential the particle moves in is quadratic V(x) = «xx?/2, and so in this case the potential
has a minimum at position x = 0. The idea that a quadratic potential may be used to
describe a local minimum in an otherwise more complex potential turns out to be g very
useful concept in both classical and quantum mechanics. An underlying reason why it
is of practical importance is that a local potential minimum often describes a point of
stability in a system. For example, the positions of atoms that form a crystal are stabilized
by the presence of a potential that has a local minimum at the location of each atom.
If we wish to understand how the vibrational motion of atoms in a crystal determines
properties such as the speed of sound and heat transfer, then we need to develop a model
that describes the oscillatory motion of an atom about a local potential minimum. The
same is true if we wish to understand the vibrational behavior of atoms in molecules.
As a starting point for our investigation of the vibrational properties of atomic sys-
tems, let us assume a static potential and then expand the potential function in a power
series about the classically stable equilibrium position xo of one particular atom, In one

dimension,
o 1 [l”

VO =Y ——vm)|  (x—xp)” (6.1)
a2t dx _

X=xp

Assuming that higher-order terms in the polynomial expansion are of decreasing impor-
tance, we need only keep the first few terms:

d 1 ,
V(x):V(xO)+E;V(x) B (x—xo)+§d—x2V(x) B (x—xy)*+--. (6.2)

Because the atom position is stabilized by the potential, we know that the potential is
at a local minimum, so the term in the first derivative in our series expansion about the
equilibrium position x, can be set to zero. This leaves us with

dl
dx?

Vx)[  (x—=xp)+-- (6.3)

Y=g

V) = Vi) + 5

The first term on the right-hand side of the equation, V(x), is a constant, and so it has
no impact on the particle dynamics. The second term is Just the quadratic potential of a
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6.1 THE HARMONIC OSCILLATOR POTENTIAL

one-dimensional harmonic oscillator for which the force constant is easily identified as a
measure of the curvature of the potential about the equilibrium point:

d2
K= i V(x), ) (6.4)

=1y

We now see the importance of the harmonic oscillator in describing the dynamics of a
particle in a local potential minimum. Very often a local minimum in potential energy
can be approximated by the quadratic function of a harmonic oscillator,

While it is often convenient to visualize the harmonic oscillator in classical terms as
ilustrated in Fig. (6.1) if we are dealing with atomic scale particles then we will have
to solve for the particle motion using quantum mechanics. Let us consider the time-
independent Schrédinger equation for a particle of mass m subject to a restoring force
F(x) = —kx in one dimension. The equation is

2m dx?

2o
(G 57) 00 =Euto) ©65)

where the first term in the brackets is the kinetic energy and the second term is the
potential energy

V=x xl=yx
V(x) =~ / F(x)dx' = — / kx'dx' = —;sz (6.6)

x'=0 x'=0

Harmonic oscillator
potential, kx2/2

Potential
energy, V(x)

Potential, V(x)

Position, .«

Force constant, & Mass, m

—

Displacement, x

Fig. 6.1 Tustration of 4 one-dimensional potentinl with a local minimum that may be approxinidted by the
purabolic potentinl of a harmonic oscillator. Also shown is a representation of a physical system that has 4
harmouic potential for small displucement from equilibrium. The classical system consists of 4 particle of
mass m altached 10 a light spring with force constant . T he one-dimensional displacement of the particle from
its equilibrium position is .
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THE HARMONIC OSCILLATOR

Note that we have used our defirition of a scalar potential that relates force to the potential
via F(r) = —VV(r).

Our next step is to solve Eq. (6.5). However, before finding the quantized eigenstates
and eigenvalues of the harmonic oscillator, we can predict the form of the results using
our previous experience developed in Chapter 3. We start by noting that the potential
V(x) = kx?/2 has invetsion symmetry in such a way that V(x) = V(—x). A consequence
of this fact is that the wave functions that describe the bound states of the harmonic
oscillator must have definite parity. In addition, we can state that the lowest-energy state
of the system (the ground state) will have even parity. With these basic facts in mind,
we now turn our effort to finding the quantum mechanical solution for the harmonic
oscillator.

6.2 Creation and annihilation operators

In classical mechanics, a particle of mass m moving in the potential V(x) = «x? oscillates
at frequency w = /k/m, where « is the force constant. The Hamiltonian for this one-
dimensional harmonic oscillator consists of kinetic energy and potential energy terms
such that

H=T4+V=22 4 4 :
+ 2n+ x (6.7)

where the x-directed particle momentum p, is m dx/dr.
In quantum mechanics, the classical momentum p, is replaced by the operator p, =
—ili d/dx , so that

A PP met,
H= 5—’; + 53 (6.8)

Mathematically, this equation is nicely symmetric, since the two operators p, and X only
appear as simple squares. This immediately suggests that the equation can be factored
into two operators which are linear in p, and %. We define new operators,

s rmaNV2( o ip
b= (E) (x+ EE)) (6.9)
ar @ 1/2 - lﬁ‘ :
b _(%) (x mw) (6.10)
so that
N
and
A o
i)x=i< "2“") (bt -b) (6.12)
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6.2 CREATION AND ANNIHILATION OPERATORS

The Hamiltonian (Eq. (6.8)) expressed in terms of the new operators is (see Problem 6.1)

Fiean w(bb'+bTbT! (6.13)

B

The symmetry of this equation will both help in simplifying problem solving and provide
new insight into the quantum-mechanical nature of the harmonic oscillator,

The commutation relations for the operators 5" and b can be found by writing out the
differential form and operating on a dummy wave function. However, we do not have to
use a dummy wave function to find the commutator if we express b! and b in terms of
the operators % and p,. For example, to find the commutation relation [b, b'] = bb* — bth

[b, b1 =bb' - b7h (6.14)
R AYAN2 moy (. D\ (. ip,
x+%> <x mw) (2fi) (x mw) (x+ma)>

(“2+'p-‘x—'xp*'+ p-" ) (6.15)

mw mw mo?

[ Xa) A A A A2

a2 DX 1Xp, Py
- i =
mw mw mle

by (O (B B\ i i
B51=(52) (22-2) L Gsospy = dpsimicm=1  oas)

where we have used the commutation relation [Py, X] = —iFi (see Eq. (5.54)).
One can now go through the same process and obtain all the commutation relations for
the operators b and 5. The result is

{ [b,5'] = 55— b= 1 j 6.17)
[5, 5] = 51— bi" — _ﬂ 6.18)
[b,b]=bb—bb=0 _} (6.19)

| .51 =z;v;f_z;fz;f=oj (6.20)

Thus, the Hamiltonian given by Eq. (6.13) may be rewritten as

= %9(1313* +5h) = f;_"’(z,z;f bbby = h2—w(1 +25') 621)

Notice that we made use of the fact that [b, b'] = bbt — b'h = 1.
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Hence, the Hamiltonian is

= ho (13*13+ %) (6.22)

The commutation relations, the Hamiltonian, and the constraint that a lowest energy
(ground state) exists completely specify the harmonic oscillator in terms of operators.
What remains, of course, is to find the condition that expresses the fact that a ground
state exists,

6.2.1 The ground state of the harmonic oscillator

To find the ground state wave function and energy of the one-dimensional harmonic
oscillator we start with the Schrédinger equation:

- a1
Hlpn =how (b'b_l_ E) (//n = Eu¢n (623‘
Now we multiply from the left by b to give
anin b .
ho | bbb+ 3 U, =E, by, (6.24
But [b, 5] = bb' — b'h = 1, so that bb' = 1+ b'h. Hence, Eq. (6.24) may be written
Fw ((1 +b'b)b+ ) . =E,by, (6.251
Factoring out the term Bt/l,, on the left-hand side of Eq. (6.25) gives
hw ((1 + b b) + ) (b!//n) - En(blpu) (626;
Subtracting the term Aw(by,) from both sides allows one to write
hw (bTb+ ) (b)) = (E, — hw)(by,) : (6.27)
aa 1
hw (b'b+ E) "/fn—l = En—llpn—l (628)
This shows that ¢,_, = (by,) is a new eigenfunction with energy eigenvalue (E, — fiw).

In a similar way, it can be shown that the operator bt acting on eigenfunction ¢, creates
a new eigenfunction 4, with eigenenergy (E, + hw).

We now know enough to define the ground state. Clearly, the operator b can only be
used to reduce the energy eigenvalue of any eigenstate except the ground state. Notice
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6.2 CREATION AND ANNIHILATION OPERATORS

that we assume the existence of a ground state. Because there are, by definition, no energy
eigenstates with energy less than the ground state, the ground state must be defined by

by, = o (6.29)

This, when combined with Egs. (6.17) to (6.20) and Eq. (6.22), completes our definition
of the harmonic oscillator in terms of the operators b* and b.

It is now possible to use our definition of the ground state to find the ground state wave
function. Since

- maN/2 (., ip. mw\ 172 h 9
b= ("= ) = (— == )
( 2k ) (x+ mw) ( 2h ) (x+ mw Bx) (6:30)
our definition 131//0 = 0 requires
mw\ /2 h d
bidnd R =R -0 .
( 2k ) (x+ me ax) Yo (631)

The solution for the wave function is of Gaussian form

¢0 . Aoef.\-zmw/zr. (632)

where the normalization constant A, is found in the usual way from the requirement that
J W§odx = 1. This gives

Ao=(=2)" (633)

Notice that the ground state wave function i, for the harmonic oscillator has the
even-parity we predicted earlier based solely on symmetry arguments.

To find the eigenenergy of the ground state i, one substitutes Eq. (6.32) into the
Schrodinger equation for the one-dimensional harmonic oscillator:

-R ¥ moe? , ~R{ 2mw moN?\  mo?
LN o) |VARY fuiiay g 4 (V) 4 2902 ) g =
(2mdx2+ 3 x)‘/"’ (2111( 2h+x<2h))+ 2 x>‘/’° Eoto

(6.34)
how  mo? mw? w  mow? mew®
<—2— hd —2—x2 + sz) lpo = (7 = sz + Tx') l/jo = Eodlo (635)
so that the value of the ground state energy, E,, is
I
E, = 7‘” (6.36)
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6.2.1.1 Uncertainty in position and momentum for the harmonic oscillator in the
ground state

The ground state wave function i, given by Eq. (6.32) is of even parity. This symmetry
will be helpful when we evaluate integrals that give us the expectation values for position
and momentum.

We start by considering uncertainty in position Ax = ((x2) — (x)?)!/2, To evaluate Ax,
we will need to calculate the expectation value of the observable x associated with the
position operator ¥ and the expectation value of the observable x? associated with the
operator 3. This is done by expressing the position operator and the position operator
squared in terms of b' and b:

B\ ..
".= b T .
* (2/11(0) (b+67) (6.37)
- h A rens h P T P
¥ = b+b')y = (bb+b"b"+bD" +b'b) (6.38)
2mew 2mw

The expectation values (x) and (x?) for the system in the ground state are now easy to
evaluate,

(x) = / Yoxodx =0 (6.39)

The fact that (x) = 0 follows directly from the observation that ¥y, is an even function
and x is an odd function, so the integral must, by symmetry, be zero.

The result for (x*) is almost as straightforward to evaluate. We start by writing down
the expectation value in integral form:

I hn mere mme men
2\ . *xA2 L * T T i
(x )_/ Yrx“dx = e f Y (bb+b"b" + bb" + b b)dx (6.40)

The terms involving by, must, by definition of the ground state, be zero. The term b by,
creates a state 4, that is orthogonal to {5 and so must contribute zero to the integral. This
leaves the term by, = ,, which means that [ 48 (bb7¢s)dx = [ ygp,dx = 1. Hence

(P = (6.41)

2mw

The same approach may be used to evaluate the uncertainty in momentum Ap, = ((p?) —
(p.)*)"/2. As before, we express the momentum operator and the momentum operator
squared in terms of b’ and b. The momentum operator can be written

Emo\'? .. .
f;xzi(—z—) (b"—b) (6.42)
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so that

K 5. o me
ﬁ:('?v(JW—hh+bH+Fm (6.43)

It follows that

(py) =0 (6.44)
and

B hmw -
) =— (6.45)

We now have expressions for Ax? = (x2) — (x)* and Ap? = (p%) — (p,)?, which,
because (x)?> =0 and {p,)* =0, give an uncertainty product:
RPme W
Taking the square root of both sides gives the uncertainty product of position and
momenturm

AxAp, = g (647)
which satisfies the Heisenberg uncertainty relation ApAx > Fi/2. Thus, we may conclude
that the ground state energy of the harmonic oscillator is just E, = hw/2. The important
physical interpretation of this result is that, according to the uncertainty relation, this
ground state energy represents a minimum uncertainty in the product of position and
momentuim.

In contrast, the lowest energy of a classical harmonic oscillator is zero. In the classical
case, the minimum energy of a particle in the harmonic potential V(x) = kx*/2 corresponds
to both momentum and position simultaneously being zero. In quantum mechanics, this is
impossible, since AxAp, > /2. As we have seen, the uncertainty product between position
and momentum that minimizes total energy gives the ground state energy E, = hw/2.

6.2.2 Excited states of the harmonic oscillator and normalization of eigenstates

What we now need to know is how to use the operators b* and b to find the eigenstates
and eigenenergies of all the other states of the system. These nonground states are called
excited states.

Fortunately, it turns out that if we know i, we can generate all other ¢, using the
creation (or raising) operator b*. To see that this is the case, we multiply the ground state
of the harmonic oscillator by b" in the Schrédinger equation:

1

ﬁm(kh-)%:ﬁa%=ﬁﬁ% (6.48)

N

o S

w (z,w;v;+ ) ¥, =E,b'y, ="y, (6.49)
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Now, using the commutation relation bb" — b*h = 1 and substituting for b'h=bht — 1,

hw (iﬁ(l}if ~D+ %) W, = ko ((13*135*‘ —bh+ %) Y, =Eb'y, (6.50)
e <(I;Tl;_ l)l’;? + %) ‘/I'l = ho (a;Tl’; - 1) + %) l’;Tlle . E,,Z;-'L!/I“ (651)
o (B*B+%) ') = (B, + ho) (') (652)

This shows that the operator b, acting on the eigenstate i, generates a new eigenstate
(b*y,) with energy eigenvalue (E, + liw).

It is now clear that b, operating on . increases the eigenenergy by an amount hw,
so that the eigenenergy for the n-th state is

E,=hw (n + %) (6.53)

where n is a positive integer n =0,1,2,... Because the time independent Schrédinger
equation for the harmonic oscillator is

B YO | 1

A=t (545 )ty = (4 ) v, = £, (6:54
we may identify the number operator

A=b'b (6.55)

which, when operating on the eigenstate Y, has eigenvalue n. See Section 6.2.2.2.
Summarizing what we know so far, we may think of 5" and b as creation (or raising)
and annihilation (or lowering) operators, respectively, that act upon the state i, in such

a way that

I;f"/jn = Au+l l/ju+] (656)
and -
l;lpn = An—l lpn—l (6.57)

where A, and A,_, are normalization constants, which we will now find. The way we
do this is to start by assuming that the n-th state is correctly normalized and then find
the relationship between the normalization of the n-th state and the n-th-plus-one state.
Rather than write ,, we use the notation [n), and for 7 we use (n|. Since we have
assumed that the r-th state is normalized, we may write

/ wudx = (n|n) =1 (6.58)
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6.2.2.1 Matrix elements
The eigenstates i, = |n) of the harmonic oscillator are orthonormal, so that
<nlln> = 611’,:1 (668)

In our notation, {r’|b* |n) = f by by, dx is a matrix element. It can be shown that the
matrix elements involving b* and b only exist between adjacent states, so that

(Illlb”ll) i (” + l)I/Z(o‘n’=n+l (669)
(I‘Llll’;lll) = ”l/zan'=n—l (670)
6.2.2.2 The number operator n

Sometimes it is convenient to define a number operator such that

| i=b'b (6.71)

The eigenvalue of the operator 7i applied to an eigenstate labeled by quantum number »
is just n:

b'bln) = b'n'Pn—1) = nPhn=1y=n"?(n—-1+ 1)!'2|n) = n|n) (6.72)

This operator commutes with b and b* in the following way

[h, b] = [b*D, b] = b[b, B+ [b", b]b (6.73)
(7, 5" =[b'D, b = Bi[h, ) +[b", b1b (6.74)
However, we know from our previous work that [Z;, l;] =0, [13, 13“] =1, and [I;T, bl=—~1,
so that

[7, 5] = —b (6.75)
and

[#, b'] = bt (6.76)

Obviously, since the Hamiltonian operator for the harmenic oscillator is H= ho(h+1/ 2)
the eigenfunctions of the Hamiltonian H are also eigenfunctions of the number operator 7.
We can summarize pictorially the results obtained so far in this chapter. In Fig. 6.2 the

ground state energy level and excited-state energy levels near the n-th state of the one-

dimensional harmonic oscillator are shown schematically. Transition between eigenstates
of neighboring energy is achieved by applying the operators biorbtoa given eigenstate.
The energy . of an eigenstate is hw(n+1/2), and the yglue of » is found by applymg the
operator b'b = i to the eigenstate. From Eqs. (6.17) anc?l ﬁ6 71) it follows that bb" = A+ 1.
The ground state ¢, is defined by bi,ho =0.

Classical simple harmonic oscillation occurs in 8 single mode of frequency w. The
vibrational energy can be changed continuously by varying the oscillation amplitude.
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Uyt Epe =hw@+3/2) ————— ply =(n+ 1)]/2’1’"“
U E, =hw(n+1/2) _ bTbyE,,: g,
Yyt Eyoy =ho(n-12) ———— by,=n 12, .

dy Ey=hw/2

by, —0=0

Fig. 6.2 Diagram showing the equally spaced energy levels of the one-dimensional harmonic oscillator. The
raising or creation operator b7 acts upon eigenstate f,, with elgenenergy E, to form a new eigenstate ¢, with
eigenenergy E, . In a similar way, the annihilation operator b acts upon eigenstate i, with eigenenergy E,
to form a new eigenstate ¢, _, with eigenenergy E,_,. Energy levels are equally spaced in energy by fiw. The
ground state s, of the harmonic oscillator is the single state for which bdx,, +1 =0. The ground state energy
is hw/2.

The quantum-mechanical oscillator also has a single oscillatory mode characterized by
frequency w but the vibrational energy is quantized in such a way that E, = hw(n +1/2).If
we associate a particle with each of the quanta 7w, then there can be n particles in a given
mode. Each n-particle state of the system is associated with a different wave function ¢,,.

The manipulation of operators is similar to ordinary algebra, with the obvious exception
that the order of operators must be accurately maintained. There is another important rule.
One must not divide by an operator b. To show this, consider the state formed by

W =bi, (6.77)
Now, if we divide both sides by b, then

1

r#/ =1 (6.78)

To show that Eqgs. (6.77) and (6.78) are inconsistent with each other, consider the situation
in which ¢, is the ground state. In this case, ¢ = bz//o = 0 by our definition of a ground
state (Eq. (6.29)). However, Eq. (6.78) states (1/ bty = Wy # 0. While one cannot multiply
by 1 /b it is possible to multiply by an operator of the form 1/ (a+b) where « is a
constant since this may be expanded as a power series in b,

6.3 The harmonic oscillator wave functions

Previously, we derived expressions for the creation or raising operator b" and the ground
state wave function y, for the one-dimensional harmonic oscillator so that

pro(moNa( R
g _(Zh) X e ox (679
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and
me

= Agexp (222 6.80)
() = Agexp (—1222) (
where the normalization constant for the Gaussian wave function is given by

mwy1/4
Ay=(— 6.81
2 ( wh ) ( )

To simplify the notation, it is convenient to introduce a new spatial variable

maw\1/2
£=(5)" (6.82)
Equation (6.79) may now be written as
ne 1 mw\ ' ' o 1 J
R B () (X — === 6.83

72 (( h) ' (mw) x| = /2 (f 3§) (623)
and Eq. (6.80) for the ground state wave function becomes
$o(§) = Agexp(—£?/2) (6.84)
where the normalization constant is simply

1\ /4
A= = 6.85
o=(3) (685)

We can now generate the other higher-order states by using the operator b'. Starting
with the ground state and using Eq. (6.66) to ensure correct normalization, a natural
sequence of wave functions is created:

thy (6.86)

= by, (6.87)

by ==, = <50 (6.88)
L“‘; _ 1 bV — L AR

b= 5= = ), _ (6:89)

b= —=vo (6.90)

Because we know the ground state wave function (Eq. (6.84)), it is now possible to
generate all the other excited states of the system. The first few states are

thy = Agexp(—¢?/2) (6.91)
ae 1 1 d 2 _i 3 _i

b =b ¢o=ﬁ$(§~%)/&oexp(—§ )= 22t pexp(-£2) = ﬁ2§df(o |

6.92
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— bty = Ty =LL( _2 2
e = = =6 = —= = (£ 57 ) J=26oexp(—£/2) 699
-1 e
= (€ 2o
po 1 _ 1 _ 4 N
b= ¢z—ﬁ(b*)3¢o——3 7 (6-5) 568 -0 (6.94)
1

" — 3_

¢4=13*¢3=ﬁ(13*)‘i¢0 5 f(16§4—48§2+12)¢0 (6.95)
_ 7t  _ (BTYS 1

s = by = = (60 = MJ_

Notice that the wave functions are alternately even and odd functions.
It is clear from Egs. (6.91) to (6.96) that there is a relationship between the wave
functions that can be expressed as a Hermite polynomial H,(§) so that

——=(32¢° — 160¢£* 4 120€) 4, (6.96)

- 1
G, () =0", . (§) = «/ﬁH" (E)o(£) (6.97)

Learning more about H, (&) one finds that the n-th polynomial is related to the n— 1 and
n—2 polynomial via

H,,(f) g n— I(g) 2(§ I)Hn—Z(g) (698)

The Hermite polynomials themselves may be obtained from the generating function

exp(—1* +21¢) = i —I@t" (6.99)
n=0 L

or

(@) = (e ™) = (1) exp(e?) g oxp(e D) (6.100)
The first few Hermite polynomials are

Hy(&) =1 (6.101)
H(§)=2¢ (6.102)
Hy(§) =4£ -2 (6.103)
Hy(§) =86 —12¢ (6.104)
H,(¢) =16£* —48£2+ 12 (6.105)
H,(£) = 32&° — 160€° +120¢ (6.106)
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Fig. 6.3 Plot of wave function and probability function for the three lowest-energy states of the one-dimensional
harmonic oscillator. Position is measured in normalized units of £ = x(mw/R)'/2,

The Schridinger equation for the one- d1men51ona1 harmonic oscillator can be written
in terms of the variable £ to give

(Z+(E-¢))no=0 (6.107)

The solutions are the Hermite—Gaussian functions

I ) 1
0.0 = mgm ) O eD(—E£/D) = <= H (OO (6.108
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where H, (£) are Hermite polynomials. These satisfy the differential equation

d d | _
(d_§2 —2% 5 +2n> H,(£)=0 (6.109)

and n is related to the energy £, by

E,= (n—{— %) hw . (6.110)

where n=0, 1,2, ... Alternately, if we know the two starting functions i, and ¢, then
the n-th wave function can be generated by using

no =2 (ssv,,_l(f)—,/i’;—lw,.-z(f)) (6111)

In Fig. 6.3, the wave function and probability function for the three lowest-energy states
of the one-dimensional harmonic oscillator are plotted. The wave functions i, (¢) form a
complete orthogonal set. So we may conclude that the eigenvalues given by Eq. (6.53)
and the eigenfunctions ¢, (§) are the only solutions of the Hamiltonian describing the
harmonic oscillator.

6.3.1 The classical turning point of the harmonic oscillator

Consider a one-dimensional classical harmonic oscillator consisting of a particle of mass m
subject to a restoring force —kx. The frequency of oscillation is @ = +/k/m, and the total
energy is Ey, = mw*A?/2 = kA%/2, where A is the classical amplitude of oscillation.
If we equate the total energy of the classical harmonic oscillator with the energy of a
one-dimensional quantum mechanical oscillator in the n-th state, we have

1
B = KAL/2 = hew (n + 5) (6.112)

The classical turning point for the harmonic oscillator occurs at position x,,, corresponding
to the classical amplitude A,. This value is just

12
%, = (Bo/K) 220 +1)! = (%) (2n+ 1) (6.113)
m

The eigenfunctions of the quantum-mechanical harmonic oscillator extend beyond the
classical turning point. A portion of each wave function tunnels into a region of the
potential which is not accessible classically. This means that there is a finite probability
of finding the particle outside the region bounded by the potential.
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THE HARMONIC OSCILLATOR

Using Eq. (6.113) we see that the classical turning point for the ground state and the
first two excited states of the harmonic oscillator are

B\ 2
Xp= (E) (6.114)
B\ M2
X, =J§(—> (6.115)
maw
f B\ 12
or, in terms of the parameter ¢ = x(maw/h)'/?,
£=1 (6.117)
& =43 (6.118)
& =5 (6.119)
£, =Q2n+ 1)\ (6.120)

Figure 6.4 illustrates the classical turning point +x, for the ground state iy and the first
two excited states ¢, and i, of the one-dimensional harmonic oscillator. In the figure the
potential V(x) = kx?/2, the energy levels E, and the position of x, are indicated.

The portion of an eigenstate that is outside the classically allowed region can be used
to obtain the probability of finding a particle in that region. If the particle is in a particular
eigenstate, then all that needs to be done is integrate the square of the wave function in
the classically inaccessible region.

Uy
Ey=5hul2

Energy, hw
ff-= ===

X g 0 xp oxm
Position, x

Fig. 6.4 Diagram showing the first three lowest-energy eigenfunctions of the ane-dimensional harmonic oscil-
fator. The wave functions penctrate into the regions of the potential that are not accessible according to classical
mechanics. The classical turning points are Xgs X, and x; for the ground state and first two excited states of the
harmonic oscillator respectively.
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6.3 THE HARMONIC OSCILLATOR WAVE FUNCTIONS

As an example, consider a particle that is in the ground state i, with eigenenergy
E, = hw/2. The region where V(x) > fiw/2 is not accessible classically. Rewriting this
condition,

1,
~mw’x
2

Wave function, ¢, Wave function,
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Fig. 6.5 Plot of wave function and probability function for the three lowest-energy states of the one-dimensional
harmonic oscillator. Position is measured in normalized units of & = x(mw/#)!/2. The classical turning points
are &y, £, and &, for the ground state and first two excited-states of the harmonic oscillator, respectively.
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THE HARMONIC OSCILLATOR

The probability of finding the particle in this nonclassical region is given by

[ eowax= | w;(§>¢o(§>d§=% [ eptag=01571  (6.124)
WK lel>1 lei>1

where we have used the fact that the ground state wave function written as a function of
the variable ¢ (Eq. (6.82)) is (Eq. (6.84)):

1\ 2
¢0(§)=(;) exp "t/ (6.125)

The numerical value of the integral in Eq. (6.124) is found from tables of values for the
error function.

The excited states of the harmonic oscillator have a reduced probability of finding
the particle in this nonclassical region. This probability decreases slowly as the energy
eigenstate increases.

Figure 6.5 illustrates the classical turning point for the wave function and probability
function of the one-dimensional harmonic oscillator. Position is measured in normalized
units of & = x(mw/H)'/?, so that the classical turning points £, = (2n+1)"/2 for the
ground state and first two excited states are &, = 1, £, = +/3, and £, = /5, respectively.



