15.5 Some elements of semiconductor physics: particu-
lar applications in nanostructures

15.5.1 Density of states: bulk (3-D) to quantum dot (0-D)

Consider the quantum confined geometries shown in Fig. 15.3 (2D: two-
dimensional electron gas, 1D: one-dimensional electron gas, 0D: three-dimensional

quantum box). Calculate the energy dependence of the density of states in
these structures and compare them to that of the 3D bulk sample shown in
the upper left corner in Fig. 15.3.

Solution

3D: Consider a uniform homogeneous bulk piece of semiconductor whose
conduction band has a parabolic E — k relationship with the bottom at F.,,
as shown in Figure 15.4:
- Fi2k?
E(k) = Eq + pert (15.99)
The solutions of the 3D effective mass Schrodinger equation are of the form
of plane waves

ox(7) = %e“;ﬁ (15.100)

normalized over a volume = L3, where L is the length of the side of a
cube large compared to the lattice unit cell. Assuming periodic boundary
conditions for ¢x(7), ie.,

du(@ + L,y + L,z + L) = $u(, v, 2), (15.101)

the allowed values of k = (kx, ky, k;) are given by

T ,
ma 15.102
Kz nwL ( )
T
=Ny—, .10
ky My (15.103)
and -
ke =n.7, (15.104)

where ng,n,, n, are integers.
The density of electrons at location 7 can then be calculated as follows

p(f) == Zf (Bl (72, (15.105)

where f(E}) is the Fermi-Dirac distribution function. We can assume that
the carrier statistics is governed by the Fermi-Dirac distribution as long as
the system is in equilibrium (e.g., no current flows and no light is shining on
it generating electron-hole pairs).

)3

Each electron eigepstate occupies a volume (2}; in k-space. Therefore, in

a volume of size d35, we have a number of electron eigenstates equal to

Q

2any &k, (15.106)
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FIGURE 15.3

Illustration of the formation of a quantum dot (bottom right figure) through
the gradual squeezing of a bulk piece of semiconductor (upper left). When the
dimension of the bulk structure is reduced in one direction to a size comparable
to the de Broglie wavelength, the resulting electron gas is referred to as a two-
dimensional electron gas (2 DEG) because the carriers are free to move in the
y and z directions only. If quantum confinement occurs in two directions, as
illustrated in the bottom left figure, the resulting electron gas is referred to
as a one-dimensional electron gas (1 DEG) since an electron in this structure
is free to move in the z direction only. If confinement is imposed in all three
directions, we get a quantum dot (0 DEG).
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FIGURE 15.4

(Left) Parabolic energy dispersion relation close to the bottom of the conduc-
tion band (E) of a typical semiconductor. (Right) Corresponding energy
dependence of the three-dimensional density of states in a bulk semiconduc-
tor.

where the extra factor 2 has been added to take into account the spin degener-
acy of each eigenstate in E—space, as required by the Pauli Exclusion principle.
For a large value of 2, the ) in Equation (15.105) can be replaced by an
integral and we obtain

o) = s / PRF(E), (15.107)

which is spatially invariant. .
Since f(FEy) is spherically symmetric in k-space, the last integration can be
easily performed using spherical coordinates leading to

+o0
p= [ dEmpEE), (15.108)
Eco

where gsp(E) is by definition the three-dimensional density of states and is
given by
k? m*k

93p(E) = =g =

Lok (15.10)
wz(%%—) m2h2

where we have used the dispersion relation in Equation (15.99) to arrive at
the last equality.
Using the E-k relationship (15.99) once again to express k in terms of E,
we get the well-known result for the 3-D density of states:
m*

g30(E) = ~3e5/2m*(E ~ Eco), (15.110)

whose energy dependence is illustrated in Figure 15.4.
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Using the above equation in Equation (15.107), the electron density in a
bulk sample is given by

o= %NCF% ©), (15.111)
where L omtkaT s
N = g5(—)%, (15.112)
and
€= ———(EFk;fc"). (15.113)

In equation (15.111), Fyis the Fermi-Dirac integral of index 3:

Fy(6) = ] ¥ dEVE — Beo (15.114)

e [L+e770]

2D: Next, we generalize the derivation above to determine the two-dimensional

density of states in a 2 DEG. In this case, the electron density is calculated
as follows

P =3 " folEm)lbmoky k. (). (15.115)

m ky,k:

The eigenfunctions and corresponding eigenvalues of the Schrédinger equation
are given by:

By s (7) = \/Lze"’““ye““"&m(x), (15.116)
where "
Bk, ke = Em + %;(kj + k2), (15.117)
and
A=L,L, (15.118)

is a normalization area to describe the in-plane free motion of carriers in the
(y,z) directions, = being the direction of quantum confinement of the well.
The wavefunctions &n(z) are solutions of the one-dimensional Schrédinger
equation and depend on the potential confinement E.(z) in the x-direction

P (o)
2m*  dz?

+ Eo(x)em(z) = Eném(z)- (15.119)

Each &, (z) is assumed to be normalized and has a corresponding eigenvalue
En.
Therefore,

p(A) = omlém(@)?, (15.120)
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where

1
Om = D Zfo(Emi, k.) (15.121
kuykz

Converting the Zk,,,k, to an integral following the 3-D case, we get

d =2 (FAz) /dle. (15.122

kyskz

Using polar coordinates in the (ky, k,) plane

27 d¢ +o00
o = / 2 Ak fo(Bky 1), (15.123
o 27 Jo
and since fo(Em,k, k,) is independent of ¢,
+oo Lk
O = / By i). (15.124,
0 T
Using the dispersion relationship of the subbands in the well, we get
h -
AEm ky k. = Z—;kdk, (15.125
and o, becomes
+o0
Om =/ dEgap(E) fo(E), (15.126:
Em
where )
m =
g2p(E) = =) (15.127)

is independent of energy and is the density of states in each subband in the
well.

Substituting the expression for the Fermi-Dirac factor fo(E), oy can be
calculated exactly,
m*

Epy—Ef
m = ﬁi—ngTln(l +e F57T ), (15.128)

o
This analytical expression for o, is valid for any shape of the confining po-
tential in the z direction. This quantity determines the sheet electron con-
centration in a 2-DEG.

1D:
If we have confinement in the y-z plane and free motion of carriers is allowed
in the z-direction, then

P(F) = ZZZfo(En,m)Mkm,n,m(ﬂP (15'129)
kz N m
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where .
Bhe asm (F) = —=€%2%80 m(, 2), (15.130)

vL
where L is a normalization factor of the plane wave moving along the z-
direction and &, (y, 2) are the solutions of the two-dimensional Schrédinger
equation
R, d?  d?

_'2771'_* (Ey—g + a?g')gn,m(ya z) + Ec’(y1 z)&n.m(ya z) = En,m&n,m(x, Y)- (15-131)
Here, n,m are quantum numbers characterizing the quantization in the y and
z directions. They are also called transverse subband indices.

The energy dispersion relationship in each subband characterized by the
two quantum numbers (n,m) is given by

o,
Eronym = Enm + k3. (15.132)
2m

Therefore, in this 1-DEG, the electron density is invariant in the z-direction

p(ya z) . Z o'n,'mlgn,m(y: Z)lza (15133)
where )
Inm = kZ Z’fo(Ekx,'n.m)- (15.134)

Converting the sum over k, into an integral, i.e.,

% =2 (%) /dkx, (15.135)

we get
L = 9 r¥o
On,m = —/ dkz fo(Bk,.nm) = —/ dky fo(Ek. nm)- (15.136)
TJoso T Jo
(15.137)
Using the dispersion relation (E — k, relation), we get
ﬁ .
AEk, nm = szdka:, (15.138)

hence

Onm = /+°° dEng(E)fo(E); (15.139)

n,m
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where
1 /2m* 1
E)=—
wB) =N BB
which is the expression for the one-dimensional density of states in each =_:-
band in the quantum wire. It diverges at E = E, ., the threshold energ: o
free propagation in that subband.

(15.2 2

0D: In that case, we are dealing with a quantum box with quantum <oz~
finement in all three directions.

P =" folEnm)$nmi(P)P, (15.141

n,m,l

where ¢r, m,1 are the solutions of the three-dimensional Schrodinger equaticz
for the E.(zx,y,2) representing the quantum confinement in all three dirz-
tions, The indices (n,m,l) are three quantum numbers characterizing =<
eigenstates of the Schrédinger equation.

We can write

p('F) = Z o"n,m,l|¢n..m,l("_")|2~; (15.1-’;:
n,m,l
with
+o0
Snmi= [ dBaun(EVo(E). (15.143
0
Therefore the 0-dimensional density of states is simply
9op(E) =2 ) 6(E — Enm) (15.144
n,m,l

where 6 is the Dirac delta function and the factor 2 has been included since
each E, . state can be occupied by two electrons with opposite spin.

Example 1: Electron sheet concentration in a quantum well

(a) Show that the sheet carrier concentration in a HEMT device (which has
a 2-DEG in the channel) is given by

m*
T wh2

Byr—E Bp—E
kgTin |(1+e t5T Y1 +e tar )i (15.145)

Ng

when only two subbands are occupied. Here, E; and E; are the bottom
energies of the first two subbands.

(b) Starting with the result of the part (a), show that at low temperature

m*
Ng = W(EF - El), (15146)
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when the second subband is unoccupied and

m*
wh?

when both subbands are occupied.

m*
ng = (Ez = El) + QW(EF . Ez), (15147)

Solution

The electron concentration in the 2 DEG formed at the heterointerface
between the high and low bandgap materials in a HEMT structure (see Fig.
12.6) is given by

p(@) = omlém(@)?, (15.148)
m
where SR A
m = %ln(l e R, (15.149)

The sheet carrier concentration in the 2 DEG is given by

+oo
ng = / plz)dz. (15.150)
—0co
If the wavefunctions &, (x) are normalized, i.e.,
+co
/ [m (z) 2 dx = 1, (15.151)
—oa
the sheet carrier concentration is given by the simple formula,
e = Om. (15.152)
m
If only one subband in the 2 DEG is occupied,
Erp—F
ns = kpTln(l + ¢ Fo7 ). (15.153)
If kpT << Ep — E,,
m*
g = W(EF —_— El) (15154)
When the second subband is occupied (but the third one unoccupied),
e Ep-n Brp—F
ne = 7rihzk}_;:r [ln(l +e fBT ) 4 In(l+ e FaT ‘)J , (15.155)

which can also be written as follows

* Ba— Ep—E
Ny = m—kBTln [(1 ms e_%"'_)(l + e“f:—Tn 2 )J , (15.156)

wh?



502 Introduction to Spintronics
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FIGURE 15.5
Confined states in a quantum well (2 DEG) of width w.
If kgT << Ep — Ey, Er — En, (i.e., at low temperature), then
Ep-E =
In (1 et 1) BBy (15.157)
kT
and 5 B
£ p— B —
n{1+e B | af_2, (15.158)
kT
Hence
m* m* m* )
e = 5 (Bp — Eo) + —5(Br — B1) = —5(2EF — By — Ep).  (15.159)

Example 2: Fermi level location in a Quantum Well

Consider a 1004 wide potential well (quantum well or 2-DEG) with infinite
walls at T = 0K. Assume all impurities are ionized (i.e., neglect carrier freeze
out). Assume m* = 0.067mp and calculate the location of the Fermi level for

o Np =10"em™3,

e Np =109%m™3.
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Solution

Assuming that all impurities are ionized, the sheet carrier concentration in
the well is given by
ng = NpW. (15.160)
Therefore, for Np = 1017 and 10%m=3, n, is equal to 10! and 10'3cm=2,
respectively.

At zero temperature, if the Fermi level E is between the N** and (N +1)t
subbands in the well, then

« N
m
= —o ;(EF - E). (15.161)
Hence
m* ol
ne= (NEF - ;zz) , (15.162)

which is a generalization of the results found in the previous example. Solving
for Er we get

1 [Npw X
Er=—= |75+ E (15.163)
N[(ﬁ-f) E’

For a well surrounded by a infinite wall (particle in a box problem), the
different eigenstates energies are given by

R? im
E; = — 94 .
s 2m*(W) , (15.164)
where ¢ is an integer.
-For m* = 0.067m, and W = 100A, we find
E; ~ i®56meV. (15.165)

Therefore, the subband energy bottoms due to the particle-in-a-box confine-
ment in two dimensions are given by the above equation.

For Np = 10Yem =3, if we assume Ep is between F; and E, and N = 1
in Equation (15.163) above, we get

Er = 59.78mFV, (15.166)
which tells us that only one subband is occupied, as assumed.

For Np = 10%cm~3, assuming Er is between Eo and Ej, the Fermi level
is found to be
Ep = 329.4meV, (15.167)

which is below E3. In this case, only two subbands are occupied. The number
of subbands that are occupied is usually found by trial and error.
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Ey

FIGURE 15.6
Density of states of electrons or holes in a two dimensional electron or hole
gas (2-DEG or 2-DHG).

Example 3: Intrinsic carrier concentration in a 2DEG

Consider the density of states as shown in the Fig. 15.6 representing the
two-dimensional density of states of electrons and holes in a quantum well.

(a) Assuming the well is undoped, obtain an expression for the Fermi level
Ef at room temperature in terms of a,b and temperature 7. Assume Boltz-
mann statistics to be valid. When is E'r exactly equal to the midgap energy,

!Ec“"Eu) ?
E— ]
(b) Obtain the expression for n;, the intrinsic carrier concentration.

Hint: Start with the approximate expressions for the electron (n) and hole
(p) concentrations in terms of g.(F) and g,(E) [subscripts ¢ and v denote
conduction and valence bands], and assume Boltzmann statistics of carriers:

f(E) = T (15.168)

where kg is Boltzmann’s constant.



A Quantum Mechanics Primer 505

Solution
(a) The electron and hole concentrations are given by

= /w 9(E)f(E)dE, (15.169)
E.
Ev
p= | 0Bl - fENE. (15.170)

(EBp-m)
Use the Boltzmann approximation, f(E) =e *37 and g.(E) = af(E — E,)
and g,(E) = b0(E, — E) where 6(z) = 1 for z > 0 and 6(z) = 0 for z < 0
(Heaviside function). We get

o8 (Ep—E) Ep—Bg
n=/ ae *5T dE = akgTe ke (15.171)
Ec
Similarly,
E, (E—Eg) Ey-Ep
p=/ be *5T dE = bkpTe *uT . (15.172)
-0

If the sample is intrinsic, then n = p = n;. Therefore,
Ep—Ee By —Ep
akgTelF5T") = pkgTeTa™), (15.173)

from which we derive
E,—F kgT. b

_ c
Ep = ———-—2 + ———2 ln(

Hence, Ep = £23E whenever a = b.

). (15.174)

a

(b) The intrinsic carrier concentration is given by n; = ,/np. Hence, using
Equations (15.171 ) and (15.172) above, we obtain

{(Be—Ey) )
n; = kpTVabe ¥57" = kgT\/abe 4T, (15.175)

Example 4: Connection between 2D and 3D density of states

The density of states in the conduction band of a bulk sample is given by
Equation (15.110).

If & 2D quantum well (of width W) is formed with infinite barriers on both
sides, show that

n
93D(Eeo + En) = 37920 (Eeo + En), (15.176)

where gop(F) is the two-dimengional density of states in each subband of the
2 DEG, given by Equation (15.127).
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FIGURE 15.7

Tllustration of the 2D density-of-states staircase touching the 3D density of
states curve. For this illustration, the effective mass of electrons was assumed
to be m* = 0.5m, and the quantum well width was assumed equal to 100A.
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Solution
For a particle in a box with a constant potential energy F.,, the eigenen-
ergies are given by

n2k2yr2

E, =FE.,+ e WE (15.177)

Hence, using Equation (15.110) we get

m* L G
g3p(Ep) = w253 \/ 2™ (W)’ (15.178)
ie.,
m* n n

9ap(En) = Ry t—ugzo(Eco + Ep). (15.179)

A plot of Wgap(E,) and gap(Feo + Ey) is shown in Fig. 15.7. This figure
shows that the corners of the staircase representing the -E‘-’h—f jump for each
appearance of a new subband in the 2DEG touches the curve Wy, p(E,). As
the well width is increased, the energy levels for the particle-in-a-box are more
closely spaced and the staircase becomes closer and closer to the Wgsp curve,

ie,,
. 1
QSD(E) = Vl}l—lonoo WQQD(E). (15.180)



