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: ' Introduction

In this chapter we discuss the emission and absorption of radiation by atoms
making transitions between different energy levels. Our general observations
will also apply to a wide variety of other quantum systems, including ions, mol-
ecules, and nuclei. We begin with a classical description of radiation and apply
it to a classical model of the atom with electrons in circular orbits, In doing so,
we discover some useful concepts and see how the classical view of an atom
fails to agree with observation. Next we will see how radiation striking a quan-
tum atom can cause transitions between quantum states. This process accounts
for the emission or absorption of a photon by an atom exposed to external ré-
diation, and also for the spontaneous emission of photon by an isolated aton
in an excited state, Armed with this understanding, we conclude the chapter by
describing one of the most exciting applications of quantum theory, the laser:

Radiation by Classical Charges

—

An accelerating charge produces electric and magnetic fields that change with
time. Faraday’s law of induction tells us that a changing magnetic field induces
an electric field, and, as first proposed by Maxwell, a changing electric field i"”

duces a magnetic field. This suggests that an accelerating charge can bring

about an intertwined process in which changing electric and magnetic fields

continually induce one another, with the fluctuations in these fields moving -
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from the charge as electromagnetic radiation. This suggestion proves to
a“’g.oﬂ-ecl: All of the many forms of electromagnetic radiation around us —
11‘511 from a lightbulb or the sun, radio waves from our favorite radio station,
g 1‘]}{5 in our doctor’s office — are produced by accelerating charges.
s n Maxwell’s theory of electromagnetic radiation these ideas are made

¢ by showing that the laws of magnetic and electric induction can be
P \bined 1o give a wave equation for both the magnetic and electric fields.
F“; wave speed ¢ for disturbances of either field is given by the combination
v slectromagnetic constants

2018

1
c= =3 X 108 m/s

V Epllo

which equals the observed speed of light. This suggested to Maxwell, what has
§ince been amply verified, that lig_h{ consists of electromagnetic waves in
which electric and magnetic fields travel together.

To get some picture of how an accelerating charge produces radiation,

{ us examine the electric field of a single charge that is abruptly put into mo-

tion. In Fig. 1 1.1(a) we show the initially static charge and its radial field. When
he charge is put into motion, the news of its changed position moves outward
at the speed of light, so distant portions of the field lines are offset from near
portions. The transition zone between the near and far fields necessarily con-
\ains @ transverse component, as shown in Fig. 11.1(b) and (c).* While the ra-
dial component of the electric field falls like 1/r% it can be shown that the
(ransverse component falls like 1/r. Consequently, at large distances it is the
iransverse component that dominates and carries radiated energy away from
the charge.

The total power P radiated by any single charge g (moving nonrelativis-
tically ') can be shown to be

¢ Ak ' | 2kgtdt
| 30
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where a is the charge’s acceleration. This formula accurately describes the
power radiated by any macroscopic system of moving charges. For example, in
TV or radio broadcasting, electric charges are made to oscillate inside the rods
of an antenna, and the resulting radiated power is given by (11.1). (See Prob-
lem 11.2.) Notice that the power (11.1) depends on the acceleration a. Thus a
charge moving at constant velocity does not radiate.* We should also mention
that with an assembly of many accelerating charges, the fields produced by the
different charges can sometimes interfere destructively, with no net radiated
power. For example, consider a uniform ring of charge rotating at a constant
rate: this amounts to a steady current loop and does not radiate any power.

*Fig. 11.1 shows the field lines for a charge with speed much less than ¢, The pattern for
relativistic speeds is more complicated. For a beautiful discussion of the fields from
accelerated charges, see Edward Purcell, Electricity and Magnetism (McGraw-Hill,
‘1954). Chapter 5.

To see how (11.1) is modified when the motion is relativistic, see Problem 11.7.

To see why no radiation occurs when v is constant, consider the inertial frame in
which v = 0. In this frame the magnetic field is zero and the electric field is constant, so
10 radiation oceurs. It follows from the principle of relativity that no radiation occurs in
any frame.
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(a)

(b)
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FIGURE 11.1

(a) Electric field lines from a static
charge are radial. (b) When the
charge is given an abrupt kick to
the right, changes in its electric field
propagate outward at speed ¢;
distant portions of the field still
point outward from the original
(open circle) position. (c) The
transverse disturbance linking near
and far fields continues to move
radially outward as the charge
coasts forward.
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The formula (11.1) and the classical theory from which it t;lcriVQ‘
sometimes be applied to microscopic systems as well. For example, “’hé Cay 8
electron in an X-ray tube collides with the anode, it undergoes rapid ‘lecell. o
tion. The classical theory correctly predicts that this deceleration wil| Pro Cry.
the X-ray radiation, known as bremsstrahlung, or braking radiation (Seq g
4.4). Since the classical theory takes no account of the quantization of 1';1{]‘.""
tion, it cannot, of course, be correct in every detail. For example, classicy) lhl.m‘
ry predicts that some bremsstrahlung X-rays will be produced at LIU'
[requencies. In reality, each photon carries energy /if, and no photong can ﬂl]
produced for which iif exceeds the kinetic energy K of the incident electr(,c
Therefore, the spectrum of emitted X-rays is cut off abruptly at f = K/ L
predicted by the Duane-Hunt law of Section 4.5. L

When the formula (11.1) was applied to a classical atom, di“.'iu“mc\
arose almost immediately, and it was this problem that suggested to Bohy thnh
classical physics needed modification, as deseribed in Section 5.4. The Probje,
in question is that an electron orbiting in a classical atom is necessarily aceg).
erating. Therefore, according to (11.1), it must be radiating clcctronmgneuc
energy. In the following example we see that the rate of radiation predicteq by
(11.1) is so large that a classical atom would collapse completely in a time on
the order of 107! seconds. {

| Example 11.1

Find the power that would be radiated by a classical electron in the n =
Bohr orbit of a hydrogen atom.

The orbiting electron has a centripetal acceleration a = v?/r and must
therefore radiate. Perhaps the simplest way to find the acceleration is to note
that it is given by Newton’s second law as a = F/m, with F = ke?/r?. Substi-
tuting into (11.1), we find that

2ke? [ ket \2  2(ke?)’c
P="55 = (_)2 (11.2)
3¢ \mr 3(mc?)rt
or,putting r = ag = 5.3 X 1072 nm,
2% (144eV-nm)® X (3 X 10" nm/s)
3 X (5.1 X 10°eV)® X (53 X 102 nm)"*
=29 x 101 eV/s (11.3)

where we have again used the useful combination ke? = 1.44 eV - nm. Since
typical energies of electrons in atoms are a few eV, the rate (11.3) is an ex-

tremely rapid energy loss. (For more details, see Problems 11.6 and 11.15.)
e

The result (11.3) shows that the orbit of an electron with an energy of 2
few eV will change radically in a time of order 107! seconds. More preciselys
as the electron loses energy, its orbital radius will shrink, and once r reaches
zero, the atom will have collapsed completely. As you can check in Problemm
11.15, the time 7 for a hydrogen atom in its ground state to collapse in this
way would be

7=16Xx10"s (11.4)
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.« dramatic instability of the classical atom was what led Bohr to postu-
'!hl:tflc' existence of quantized orbits to which the classical laws of radiation
iﬂ_l; pot apply. As we saw in Chapter 7 (and review in Section 11.3), the
",hr('jdinger theory avoids this problem since it predicts that aloms have
jonary charge distributions.
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f{ﬁ Stationary States and Transitions

n gection 11.2 we saw that the radiation from a classical atom would lead to a
apid collapse of the electrons’ orbits, We now turn to a proper quantum treat-
ent of the atomic electrons and will see how this disastrous collapse is avoid-
ol As We discussed in Section 7.3, the wave function W(r, ) of an electron
senerally depends on time as well as the spatial coordinates. In particular, sup-
“ose that at time ¢ = 0 the wavefunction is a stationary state W(r,0) = ¢,(r)
with energy I,; thal is, s, satisfies the time-independent Schrodinger equa-
jon with E = [E,. Then at any later time ¢ the complete wave function W(r, 1)
is a product of ¢r,(r) and the oscillatory phase factor e Bl as shown here:
W(r, 1) = ¢, (r)e Entlt (11.5)

as in Eq. (7.11). In the problems considered so far, we have been able to
restrict attention to the spatial wave function ¢, (r). However, since transitions
are a distinctly time-dependent phenomenon, we must now examine the full
time-dependent wave function W (r, t).

As we discussed in Chapter 6, the probability density P of an electron is
given by the square of the absolute value of its wave function

P(r,t) = |¥(r, 1) (11.6)
which for the wave function (11.5) becomes
P, £) = ra(0)[? X e =y, () (117)

since |e™| = 1. (See Sec. 7.3.) We see in (11.7) that the probability density
(and hence the charge density) of an electron in the state (11.5) does not
depend on time. It is for this reason that these states are called stationary
states. Their charge distributions are stationary and hence do not radiate. *

The simple Schrodinger theory outlined here successfully explains the
existence of stable atomic states. Unfortunately, it goes too far, since it pre-
dicts that all states of definite energy should be perfectly stable. Thus, our task
now is to explain how transitions can occur, in which an atom or other quan-
tum system can move from one energy level to another. We will describe the
theory of transitions in the next two sections, but let us first sketch the main
features here.

If the initial wave function W (r,0) = ,(r) really is a solution of the
time-independent Schrodinger equation, including the correct potential ener-
8y U of the isolated atom, then the full time-dependent wave function is given

———
*You might object that in a stationary state with ! # 0 the charge distribution may be
Stationary, but the electron is surely circulating since it has nonzero orbital angular
Momentum. This is correct, but this situation corresponds to a steady current loop and
Still does not radiate.

Section 11.3 « Stationary States and Transitions
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by (11.5) and the atom remains locked in the same state for all time, R,
sitions to occur, there has to be some outside influence that adds an aq dilila-arl\.
term W to the potential energy. For example, we might switch on an ele(‘lﬂm
field & in the x direction. In this case the electron would acquire an mldilicniu
potential energy Ongy

W = efx (”.8)

This extra potential energy is called a perturbation, since it perturbs the
lem and causes transitions. Perturbations can come about in several Ways. lh
example, a pulse of radiation directed at an atom can produce a briefnsu”:n{’r
ry electric field causing a potential energy of the form (11.8). The Passage Ofﬁv.
second atom close by the atom of interest can change the potential energy U’;
the latter and cause transitions. Finally, as we will argue in Section 117, eve,
an atom that is perfectly isolated is subject to tiny electric and magnetic ﬁeld]-
called vacuum fluctuations or zero-point fields, and it is these vacuum HUL‘tua:
tions that cause an excited but isolated atom to emit a photon and drop tog
lower energy level.

It is easy to understand in a general way how a perturbation like (11 g
can cause transitions. The wave function i, is a solution of the Schriidingm
equation, including just the potential energy U of the isolated atom. It is not 3
solution of the Schridinger equation with the full potential energy U + W
and is not, therefore, a stationary state of the actual problem including the pey.
turbation. Therefore a system that starts out in the state b, can change to some
other state is,,,.

The theory of transitions caused by a perturbation is called fime.
dependent perturbation theory. As we will describe in Sec. 11.5, when a 8ys-
tem starts out at time ( = 0 in a state W(r,0) = 4,(r) and is subjected 1o 3
perturbation W, there is a definite probability P(n—> m) that a subsequent
measurement will find the system in a different state y,,(r). In some simple
situations, we will see how this probability can actually be calculated, but the
main purpose of the next two sections is just to see how quantum mechanics
can account for the occurrence of transitions. If you feel happy to accept the
claims just made, then you can skip these two sections without significant loss
of continuity.

T .
fm'?#l More Quantum Formalism*

*This section can be omitted without significant loss of continuity.

Before we describe the quantum-mechanical theory of transitions, it is useful
to introduce some changes of notation and a couple of new ideas. These are
developments that you will certainly meet if you take another course in quan-
tum mechanics, and now is a good opportunity to introduce them.

The Hamiltonian Operator

Our first development concerns the way that we write the time-independent
Schrodinger equation,

% 2
dx'/; ﬁ—rzn[U(x)—E](/f (11.9)
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ne. For a __ gmplicity, we’ll consider a one-dimensional system for now.) The form :
nad 'hh [I'nq is convenient for study as a differential equation, but it is not the form in |
1 .an Lige r;I {II-}.h the equation is normally written in more advanced work, where it is
n "‘ld“iﬂnv.ﬁ \"r:j',l”y reorganized Lo read
{3 l]ﬁ i -
A d®
-5+ U(x =E 11.10
rbStheSyS\ . . .. o T 5 = — " e : R
al ways; e quantity in the square brackets on the left is a differential operator, or just
ef OSciH;fOr perator: i‘(’)Pe'l‘al'ing" on a .funclion tf{« .il gives the function —(#i%/2m)
assage 0[’0\ v + [/, This operator is so important, it is given a name, the Hamiltonian
1| energy a upe‘“""‘ or just Hamiltonian, * and is denoted 1/
5) Of
1117, @y,
i ! ) [)) ﬁ2 d2
HL[]}_ rle](js H = ———2+U(_x) (]]1])
m ”uCtUa. 2m dx
1 drop 14 " . o
The Hamiltonian is intimately connected to the energy of the system. For
like (11.8) oxample, if ¥ is the plane wave ¢ = &%,
Zhrﬁdin
8er
ILis noty Hy = —ﬁ—Zd—erU thx = @+U =[K + Uy (1112
U + = T e e =1 ¢ = W (11.12)
18 the per-
’e . . .
3¢ Lo some In other words, the operator H acting on a plane wave gives (K + U) times
led i the plane wave. More important, the time-independent Schrodinger equation
- a'me' can now be written as
Qys-
>ct ; ! ; ; St
lgs‘;que ; Hy = Eif (11.13)
- . iy j /
ne si . ) -
debslllrtnge from which we see that for any wave function ¢ that has a definite energy F,
lf’:cha % the differential operator H acting on ¢ gives simply E times . In this sense, the
cceptrﬁfes Hamiltonian operator of any system determines the allowed energies of the
) system.
t . . . .
cant log One of the great advantages of this new notation is this: If we were to
consider a three-dimensional particle, the Schrodinger equation in the form
corresponding to (11.10) would become
wa* 9
—_— — =t —+— |+t U =E 11.14
is useful But if we agree to define the Hamiltonian for a three-dimensional particle as
hese are
in quan- w9 & &
H=-—|—S+—5+3|+tU{k)
2m\ dx dy 9z
the three-dimensional Schrodinger equation takes the same simple form,
yendent Hy = Ey, as in one dimension. No matter how complicated our system, we
*The origin of the name is this: In classical mechanics, the Hamiltonian function is a
Unction that gives the energy of a system (named after the Irish mathematician
11.9) William Rowan Hamilton). As we will argue directly, the Hamiltonian operator plays
an analogous role in quantum theory.
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can always define the Hamiltonian H so that the Schrodinger equatioy,
this simple form, Hyr = Ey. Of course, the operator [/ may become ver Uy
plicated, but the great advantage of our new notation is that we can Llim“:"m\
Schrodinger equation for all conceivable systems at the same time iy, ( ‘\h 1t

simple form Hyr = Ei. For those readers who haven’t seen this kind of g Oy
tion before, we should emphasize the form of the equation: g,

(differential operator) X function = number X (same function)

This type of equation is called an eigenvalue equation, and the values of
which it has solutions (namely, the allowed energies) are called cigcnv."““'
. s . - ” “Allipg
The equation that determines the time development of an arbipy,
s A ¥ : M

quantum state (of definite energy or otherwise) is the llmu.-:-d(_;p‘p,m.‘t
Schrédinger equation, which we introduced in Section 7.11.* For Qi](f
dimensional particle, this is ‘
n 9
2m 9x?

5 iﬁ%‘l’(x,t) . [ + U(x)}‘lf(x,t) (1.15)

which we can immediately rewrite in terms of the Hamiltonian operator ag

fﬁi‘l’ = HW¥
ot

and in this form, the equation applies to any system (although, of course, the de.
tails of the operator H vary from system to system). This is the equation we wi]
use to study how atoms make their transitions from one energy level to another,

A Useful Abproximation

It is very seldom that one can solve the time-dependent Schrodinger equation
exactly, and physicists have developed many schemes for finding approximate
solutions. In this chapter we will use just one simple scheme, which lets us find
W at a time ¢ + At in terms of its value at time ¢, at least if Af is small. This
scheme is based on the familiar approximation

flt+ Af) = f(e) + Atj—];

which follows from the definition of the derivative. In the case of the wave
function ¥, the time derivative 9W/at is given by the time-dependent
Schrodinger equation (11.16) and the corresponding approximation becomes

At
Wt + At) = V(1) + EH\PU) (11.17)
Notice that ¥ depends on other variables besides ¢ [for a particle in one di-
mension ¥ = ¥(x,¢) as in (11.15); for a particle in three dimension$
¥ = W¥(x, y, z,t); and so on], but for now, it is convenient to omit these.

*If you skipped Section 7.11, you should return to read it now, before continuing with
this and the next section.
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The approximation (11.17) tells us what gets added to W as the time ad-
o5 by At. Itis interesting to check this for the case that W happens to be a
““ﬂ-onall'y state: Suppose that at t = 0, ¥(0) = ¢, a state with definile ener-
513“: satisfying the time-independent Schrodinger equation Hir, = Eqiy,.

AH
iy_ﬂ;rding to (11.17), the wave function a short time later is
u

At iAt iE, At
1]F(AIJ = \I!((]) + Eh’!#&ﬂ =l - T‘Gn'{"n = (J - ﬁ )'J{"u (”18)

That is, the new wave function at time At is the original function ¢, multiplied
a (complex) number and represents the same physical state (as we knew it
ust, since it is a stationary state). In fact, the multiplicative factor that
ears in the last expression of (11.18) is easily understood, since we know
(he exact solution of the time-dependent Schrodinger equation in this case: As

in (11.5)

' . Et E
W(t) = e By, = (1 - 2L 2y .
(t)y =e iy 1 % 272 v,  (11.19)

where the sum in parentheses is just the Taylor series for the exponential
factor in the previous expression. Comparing (11.18) with (11.19), we see that
{he approximation (11.18) is just the first two terms of the Taylor series for
(he exact form of W(At) and is certainly a good approximation for small time
intervals At.

Completeness of the Stationary-State Wave Functions

The stationary states of any quantum system are the solutions of the time-
independent Schrodinger equation, Hys, = Epi,. Itisa remarkable fact, though
not one we can prove here, that any wave function ¢ of the system (stationary
state or not) can be expanded in terms of these stationary-state wave func-
tions. That is, any wave function ¢ can be written as

P(x) = > Ann(x) (11.20)

where the coefficients A, are constant complex numbers, which depend on the

- particular function ¢(x) we are expanding (and we have written the expansion

for the case of a one-dimensional particle, though it is equally valid for any
quantum system). A set of functions with this property, which can be used to
expand any function, is often called a complete set of functions, or a basis set.
Thus, we can rephrase our claim to say that, for any quantum system, the sta-
tionary-state wave functions are a complete set for the expansion of any wave
function of the system. The significance of the expansion coefficients A, is
this: | 4,,|? is the probability that a measurement of the energy will result in the
value E,,.

Ex-a_mple 11.2

Recall the stationary-state wave functions for a particle of mass m in a one-
dimensional rigid box (the infinite square well) of width a, and write down
the expansion of an arbitrary wave function ¢(x) in terms of these stationary-
state functions. What are the expansion coefficients A, if ¢(x) is in fact the

Section 11.4 « More Quantum Formalism 341




342 Chapter 11 « Atomic Transitions and Radiation

ground-state wave function? What if ¢(x) is the first excited State? W,
(x) is a 50-50 mixture of the lowest two states? Aty
The stationary-state wave functions for the rigid box are given jp, (76

2
W= [p T re1aa g,

= 2
vx) =3 A,.\/; sin - (112

which you may recognize as the Fourier expansion of an arbitrary functioy, in
terms of sine functions, as sketched in Chapter 6. This example illustrages a
common occurrence: For a particular quantum system (the infinite Squage
well here), the completeness of the stationary-state functions is often dery,.
able from some standard mathematical theorem (Fourier’s expansion theo.
rem in this case). In general, however, it is just a postulate of quantum theory
that all systems have this property.

If the wave function (x) is known to be the ground state Y (x),
then clearly

Alz]., and A2:A3:"':0

This shows that the probability of finding the energy E = E; is |4 =1,
while the probability of finding any other value is 0. Similarly, if (x) is:
known to be the first excited state r(x), then :

A1 =0, A, =1, and Ay =A,=-- =0

Finally, if ¢(x) is known to be a 50-50 mixture of the two lowest states, the
probabilities of finding E = E; or E = E; must each be a half, so
[A44)* = |4,% = 1/2; that is, both A; and A, must have absolute value 1/\/7- :
This does not quite fix the two coefficients, and indeed there are several <
distinct wave functions that can all be described as 50-50 mixes of the two -
lowest states. One example would have

A=A, =1/V2, and Ay=A,=-=0

but another would have A; = ~ A4, = 1/4/2 and so on.

Orthogonality of the Stationary-State Wave Functions

If we know the stationary-state wave functions y(x) for some system and W¢
are given an arbitrary function #(x), then it is surprisingly easy to find th
coefficients A, in the expansion (11.20). This is because of a remarkable prof”
erty of any set of stationary-state wave functions, called orthogonality:
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te? Wha, . ( (with n = 1,2,---) are the stationary states of any quantum system,
lf ¢\ "t can be shown that*
:nin (16 he?
0 m'ﬂ()*‘l’()-l. JO ifm#n (1123)
X X)X = i : e
A G NS |1 ifm=n IS
(.21
hat this integral equals 1 if m = n is just a statement that the wave functions
iw pormalized (as we assume throughout this discussion). That it is zero if !
4 nis a new result, often expressed by saying that i, is orthogonal to i,
nce the integral in (11.23) is in some ways analogous to the scalar product
(1.2 :-h of two vectors a and b, and the scalar product is zero if the vectors are
) m{lwgonal. For a proof of the orthogonality property for one particular |
gystem, S€€ Problem 11.17.
unctiop ; . .
[UStrat:Sm Finding the Expansion Coefficients
. a
1te square ed with the orthogonality relation (11.23), it is a simple matter to find the
. Arm g )/ p [
ten derjy. coefficients A, in the expansion (11.20) of any given function Yr(x). Multiply- |
510D theg. ing both sides of (11.20) by 4,,(x)* and integrating, we find that
m the()ry
o0 e 0
e oty [ omruras = San [ iyt ds
’ —00 n=0 -0
By (11.23), all of the integrals on the right are zero, except the one withn = m,
which is equal to 1. Thus the whole infinite series collapses to a single term,
equal to A,,, and we conclude that
Af .
f(a; s
A, = (X)) ¥ (x) dx (11.24)
el
If you did either of Problems 6.35 or 6.36, you will recognize the result
(11.24) as the method used to find the coefficients in a Fourier series. We will
tates. the use the result (11.24) in the next section to find the probabilities of transitions
hal f, - between different energy levels of a quantum system.
e 1/V2.
s several =y
the two W Transitions; Time-Dependent Perturbation Theory*
*y
Like Section 11.4, this section can be omitted without significant Joss of continuity.
However, you do need to have read 11.4 before reading 11.5.
We are now ready to see how an atom or other quantum system in a station-
ary state ,, can make a transition to another stationary state ¢,,. First, for
Teasons that will emerge directly, we will call the Hamiltonian operator for
*We state the result here for a particle in one dimension, but it extends in a natural way
and we 10 any quantum system. For example, for a three-dimensional particle, we have only to
sind the feplace the integral over x by an integral over x, y, and z. We have stated the orthogo-
: i Mality property for the case that the energy levels are nondegenerate; if there are any
£ Prop Egeneracies, the statement needs a little more care, though the practical consequences
ality: If are the same.
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the isolated system H,. For example, if our system is an electroy, i
dimension, then

B 3

Hy = o
0 2m 9x?*

U(x)

If U is the exact potential energy of our isolated system and if the SYster, .
initially in the state ¢, (which satisfies the time-independent Schrgg;, "
equation Ho, = E,,), we know that the full wave function for all {jy, }gle,r
the form (11.5), b

V(1) = e Bl

Therefore, the system remains in the same stationary state ¢, for all time ang
no transitions can occur. For transitions to occur, the true Hamiltonian g of
the system must contain an additional term,

H=H,+W (11.25)

At the end of Sec. 11.3, we mentioned several ways in which this extra perty;.
bation W can come about. For the moment, let us suppose it arises from g
electric field & in the x direction, switched on at time 0, in which case the ¢lec.
tron acquires the additional potential energy (11.8)

W = eéx (11.26)

The situation is now this: At time ¢ = 0, our system is in the state
| ¥ (0) = y,. The state ,, is a stationary state, but it is a stationary state of the
' “wrong” Hamiltonian, Hy. The true Hamiltonian is H = Hy + W, and to find

what happens to the system, we must solve the time-dependent Schrodinger
equation using this H. The approximate method of solution that we will de-
scribe is called time-dependent perturbation theory. To simplify our discus-
sion, we will suppose that the perturbation W is switched on for a short time
At, in which case, we can use the approximate solution (11.17) to find ¥(A!) .
after the perturbation is switched off: i

(A = W(0) + ZLHV(0) = g, + L (Ho + Wi,

iE, At i At
= == - —W 11.27
(1 h >¢" h v !

Comparing with (11.18), you can see that the first term here is just what would
have evolved in the absence of any perturbation; in particular, it is prnporliﬂﬂ'
al to i, so it has not changed the physical state of the system at all, On the
other hand, the second term is an additional term, which can represent a sma

component of a different stationary state y,,,. That is, because of this extra ter™
resulting from the perturbation W that we switched on, there is a nonze’®
probability that we will find the system in a different state s, Before wé dls:
cuss this important result any more, let us illustrate it with a simple examp %
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q electron is initially in the ground state ¢, of a one-dimensional rigid box.
| time ¢ = 0 we swilch on an electric field ¢ in the x direction, giving the
Jectron an additional potential energy W = eéx. Describe the form of the
: ectron’s wave function a short time Ar later when we switch the perturba-
H[L.

According to (11.27), with W replaced by e¢'x, the wave function at time £ is

glect’
ion €

ie& At
h

\P(AI) ~ A(J/l . )Cllfl (]128)

where A denotes the multiplier in parentheses of (11.27). The first term is
just 2 multiple of the original wave function ¢ and is what would have
evolved in the absence of any perturbation. The second is the extra term,
caused by the perturbing field &, Its significance is illustrated in Fig. 11.2.
part (a) of that figure shows the original wave function . (It is convenient
in this discussion to place the origin at the center of the well, so the edges are
now at =a/2.) Part (b) shows the extra term of (11.28), which is proportional
10 xf;. The amplitude of this function depends on the parameters of the

roblem, but is certainly small (since our approximate solution requires that
At be small). The important point is that the extra term shown in Fig. 11.2(b)
has almost exactly the shape of the first excited state yr,, which is plotted for
comparison in part (c). The main message of Figure 11.2 is that switching on
the perturbation W = e&x has added on to the initial wave function ¢ a
small term that closely approximates i, (times some constant), so that the
full wave function now has the form

There is now a small probability — namely, | B|* — that a measurement of the
system will find it in the state* is,.
= e———

/t!fl
¥

!
~al2 al2 \/| al2

(a) ®) (©
FIGURE 11.2

() The ground-state wave function ifry for an electron in an infinite square well of width a,
centered on the origin. (b) An electric field &' switched on briefly adds to the wave
function of part (a) a small term proportional to xifi;. (c) The extra term shown in part (b)
has almost exactly the shape of the excited-state wave function .

1!’@<

*As we will see in the next example, there is also a small probability of finding the elec-
tron in certain higher levels, m > 2, but these probabilities are so much smaller than
that for m = 2 that the form (11.29) is an excellent approximation.
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In general, the effect of switching on a perturbation W is to add .
tial wave function ¢, the extra term of (11.27) proportional to Wi, , Which1 nj,
contain small components of several different wave functions ¢, . For E.“u}.
m # n, there is therefore a definite probability P(n— m) that a S}‘Slelnkikch
started out in the state s, will be found, after the pefturbation has acted ly
state ,,. To evaluate this probability, we can expand the extra term as iy (1] 20&

i At
_TWlpn . ; Apthm ( ‘30)

and according to (11.24), the coefficient A, is given by the integral

iAt [,
A = _T VWi, dx (”-3])

The transition probability P(n — m) is then just |A,,[?, so

e (2]

The integral inside the absolute value signs is called the matrix element for the
transition (n — m). By evaluating this integral, we can find the probability for
any transition in which we may be interested.

| Example 11.4

Consider again the electron of Example 11.3, which is initially in the ground
state of the infinite square well and is exposed to an electric field & for a
short time Ar. Find the probabilities P(1 — m) that it will subsequently be
found in the level m for m = 2,3, and 4.

The required probabilities are given by (11.32), with W = e&x. Thus, li'

2 )
Pin—m) = (2] [ e

The evaluation of these integrals is a straightforward (though surprisingly
tedious) exercise. The wave functions ¢, are given in (11.21), although we
have to rewrite them since we have moved our origin to the center of the
well. You should have no difficulty in showing that, with the well centered on
the origin, the wave functions with n odd become

2

/_ YW, dx (1.3

2 |
(11.33) |

2
U, = \/: cos 2% (n odd) (11.34)
a a
whereas, for n even, they become
2 . nmx
g, = Ssin—_— (neven) (11.35)

Thus, the integral of (11.33) for the case thatn = 1 and m = 2, is

_r 2 [ 2mx X
Yoxy dx = = sin ——x cos — dx (11.36)
—00 a —a/2 a a
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. : 2
Id 19 an pich can be evaluated (Problem 11.21) to give 16a/97°. Thus,
whir W
- Fo, Y e& At 16a \?
ey G P(1—2) = ——— 11.37
Wslem Ul':]] ( ) Lo On? ( )
L\t_cd_ in the
S (1]
<f n exactly the same way, we can evaluate
] ” 2
(11.39) P(L—4) = (Mﬁm 32a2> |
2257 }
some 150 times smaller than P(1 — 2). The transition 1 — 3 is more interest- ‘
( 131) ing: The integral of (11.33) is I
00 aj2
¥ 2 3mx X |
/ Yaxy dx = —/ COS ——X COs ——dx (11.38) !
—0 a J—ap a a |
(11.32) There is no need to evaluate this integral: It is casy to see that the integrand
is an odd function of x; that is, its value at —x is the negative of its value at x.
nt for gy gince the range of integration is the symmetric interval —a/2 to a/2, the con-
ability foe (ribution from any point x is cancelled by that from —x, and the integral is
| exactly zero. Thus, at least within our approximations, the probability for the
transition 1 — 3 is zero, P(1 —3) = 0.
It is easy to see that this last result applies to any transition n —> m with
both n and m odd, and likewise with both n and m even. Because of the sym-
e ground metries of the sine and cosine functions, the integrals concerned are zero, and
1 & ,
lently oe P(odd — odd) = P(even—even) = 0 (11.39)
| = ——— ]
¥x. Thus, ]
Selection Rules
11.33) The final result of the last example is an instance of an important phenomenon.
~ Itoften happens that because of the symmetries of the wave functions, the inte-
o gral involved in the transition probability P(n — m) is exactly zero. When this
orisingly happens, we say that the transition concerned is a forbidden transition, and with-
ough we in the approximations used the probability P(n— m) is zero. Strictly speaking,
:_r of the this does not mean that the transition is impossible, since the expression (11.32)
cered on is only an approximation. Nevertheless, it is usually the case that the probability
of forbidden transitions is small compared to other “non-forbidden” transitions. i
With this terminology, we can say that in the last example, transitions between
1.34) any two odd levels (and likewise between any two even levels) are forbidden.
A rule of this kind, specifying a whole family of forbidden transitions, is called a
selection rule. Selection rules are very useful in deciding which transitions of a
quantum system should be observable with appreciable probability.
1.35) Upward and Downward Transitions
In our example of the electron in the infinite square well, we assumed that the
System started out in its ground state, so that all other states had higher ener-
gy, and the only possible transitions were upward transitions to a higher level.
.36) However, the result (11.32) applies equally whether the level n is lower than
the level m or vice versa. Thus, if the electron were initially in the level n = 2,
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laVaVaveY wm
Absorption Emission
(a) (b)

FIGURE 11.3

Schematic diagram of absorption
and stimulated emission. (a) An
incident photon is absorbed by the
atorn, which makes an upward
transition. (b) In stimulated
emission one photon striking the
excited atom stimulates the
emission of a second photon,
causing the atom to make a
downward transition,

switching on an electric field could cause it to drop downward to he i
state. Transitions from a higher to a lower level usually result in the emisg,-'?u"d'
a photon. Thus, a downward transition caused by an externally appligq i .‘unf
called stimulated emission — a process that plays a key role in the OPery; iy
of lasers, as we discuss shortly. I

Perturbations that Last a Long Time

So far we have considered only a perturbation that is switched on for asy

time A¢. It often happens that the external influence that causes alomic gy, “II
tions lasts for a long time. For exam ple, we could place the atom in , S[eahL
beam of light, in which case the atom would feel oscillating electric ang iy y
netic fields that last for hours or even days. To handle this, we need to exge ;
our time-dependent perturbation theory to cover longer time intervals, Thic
extension is unfortunately beyond our scope here, but the main results ca
easily described. It turns out that the transition probability is given by 4 form,
la very similar to (11.32) except that (as you might guess) it involves an integry,
over time. In particular, it remains true as in (11.32) that the transition Proba.

bility is proportional to the absolute value squared of a “matrix element”

I 1)(;

2

P(n—>m) « ,/ YW, dx (11.49)

Thus, many of the ideas discussed above still apply. For example, when symp,.
tries of the perturbation W and the wave functions imply that the integra iy
(11.40) is zero, we say that we have a selection rule, and the transition cop.
cerned is said to be forbidden.

An important example of a perturbation that lasts a long time is the os-
cillating electric field associated with electromagnetic radiation that we could
direct at an atom. In this case the perturbation would have the form
eéyx cos At, or, a little more generally,

W(r) cos wt (11.41)

where o is the angular frequency of the applied radiation. In this case the
expression inside the absolute values signs of (11.40) must include a time inte-
gral as well. This integral over time turns out to be negligibly small unless the
frequency w of the applied radiation is close to the value

w = |E, — E,|/4 (11.42)

That is, transitions occur appreciably only if #w is close to the energy differ-
ence between the two levels concerned. This result agrees with our knowledge
that a photon carrying energy fiw can cause an upward transition (n — m)
with E,, > E, only if fiw is equal to the difference E,, — E,, in which case the
photon is absorbed. However, there is a second important possibility: If
E, < E,, the downward transition n — m can occur, provided #Aw is close t0
E, — E,,. In this case, energy conservation requires that the atom release en-
ergy, which it does by emitting a photon of energy iw = E, — E,,, so that the

incident radiation gains one photon. Since the emission of this photon i
caused, or stimulated, by the applied radiation, it is called stimulated emissi(f"
of radiation. Both of these possibilities are illustrated schematically 1?
Fig. 11.3. The possibility of stimulated emission, depicted in part (b), is the
basis of the laser, as we discuss in Sections 11.9 and 11.10.
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h . .
meisgjOund 11 5 A Brief Review
ied of .

Operai- iy S review briefly the |‘csull.~:‘ n‘l‘ the .pr(,r\fious sccli_on If you 1'8:1d‘lha} see-
loy K¢ " pis review may help to reinlorce its ideas, and if you didn’t, this will es-
“ﬂn:qh (he ideas you need to lake on faith. The central result is this: Suppose
mhi]:u! isolated quantum system is initially in one of its stationary states iy
(h tﬂsu next that the system is subjected to some outside perturbation giving

Or a gh, gupp. T > i : : .
s or oan additional potential energy, which could be a static W (r) or an oscillatory
™ Hang;, it ¢) cos wi. Then, at any later time, there is a definite probability P(n— m)

andslcady 4t the system, which was in the state ., will be found in a different state ¢,.
o Mag, i transition probability can be caleulated by the method of time-dependent
L extend B

vils Th i,crllirhm"un theory and is found to have the form (11.40)

ts cap be ; e

a formy, : P(n—m) ’ / YW, dV, (11:43)

1 lntegral | LA |

I proby.

nt” written here in the form appropriate for an electron in three dimensions, with

4V = dx dy dz. If the perturbation is the oscillating electric field of electro-
114 u-.agnclic radiation, the transition (n — m) can be an upward transition, result-

-40) ing in the absorption of one of the incident photons, or a downward transition,
resulting in the stimulated emission ol another photon of the same frequency.
[n either case, {ransitions associated with electromagnetic radiation and involv-

s
;e}grr;?i; ing the emission or absorption _of photons are called radiative _[ransilions.
on con. [t often happens that the integral (or “matrix element”) in (11.43) can be
shown to be zero on the grounds of symmetries of the perturbation W and the
the os. wo wave functions. In this case, we say that the transition (n—m) is
e ¢ forbidden, although this usually means only that the transition is much less
e form probable than other “non-forbidden” transitions.
1.41) ﬁf.? | Spontaneous Emission
1se the We have seen that radiation directed at an excited atom can cause it to make a
e inte- downward transition, emitting a photon as it does so. However, we also know
ess the that an excited atom can make a downward transition even when it is isolated
from any applied radiation. This process is called spontaneous emission. As we
discussed in Section 11.3, an isolated atom in a truly stationary state, excited or
A2) not, would remain forever in that state. How, then, do excited atoms give off
light without the aid of stimulating radiation? The answer is that the radiation
differ- required to stimulate downward transitions is always present, even when an
/ledge atom is perfectly isolated from all apparent sources. The origin of this ubiqui-
—m) tous radiation has to do with the quantization of the electromagnetic field.
se the We know that the classical description of the electromagnetic field fails
ity: If to explain the quantization of radiation. The complete quantum treatment of
e to electromagnetic radiation is called quantum clectrodynamics (or QED) and is
ie en- beyond the scope of this book. However, we can easily describe its predictions
at the relevant to our present discussion: At any given frequency, o, the energy of ra-
on is diation is quantized and can change only by integer multiples of fiw, corre-
ssion sponding to the now-familiar concept of photons. Furthermore, QED predicts
ly in that the lowest possible energy of the radiation field is not zero. That is, when
s the one treats the electromagnetic field as a quantum system, its lowest encrgy

level] is found to be greater than zero.
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FIGURE 11.4

In the Casimir effect, zero-point
radiation exerts forces on two
uncharged parallel metal plates.
Outside the plates, all wavelengths
of radiation are allowed; between
the plates, only certain discrete
wavelengths are allowed (just as
only certain discrete wavelengths
are allowed on a stretched string).
If the plates are close enough
together, this difference produces a
measurable inward force, due to
the unequal radiation on opposite
sides of either plate.

We have scen similar behavior in other quantum systems. For j -
the minimum energy of a particle in a box is nonzero. As we saw in SCL‘-ti{,qn"ﬁ.
the reason for this is the Heisenberg uncertainty relation betweey 0 (’R
and momentum. A similar uncertainty relation applies to the electric ang | liy
netic fields ¢ and B and implies that they cannot both be exactly ?-cro.e\,ul“&
empty space. As a result, the electromagnetic field has a nonzero mnp“iuun I
every frequency. This minimum possible field is called the ;wrcp.puimt il
vacuum-fluctuation, field. Op

In many situations the effects of the zero-poinlt fields are ncgligih]_._-_ No
ertheless, the presence of these fields can be demonstrated in an experim;k
first proposed by the Dutch physicist Hendrik Casimir. As illustrageg A
Fig. 11.4, this experiment measures a tiny force pushing two unchargeq PH]‘-I"
lel metal plates together. This force would not exist if space were not fifjq h‘
the zero-point fields. y

For our present purposes, a far more important consequence of the Zerg,
point fields is their effect on an isolated atom, If the isolated atom is i an oy,
cited state, the zero-point fields can stimulate it to emit a photon and drop g
lower state. Since this process occurs without externally applied radiatiop itis
called spontancous emission. However, you should recognize that stimulagey
and spontaneous emission are essentially the same phenomenon. Stimulaeg
emission is caused by an externally applied field. Spontaneous emission 1S just
stimulated emission at its lowest possible rate, which occurs when the electrg.
magnetic fields are at their minimum possible (zero-point) level.

Although the zero-point fields cause spontaneous downward transitiops
conservation of energy does not allow them to cause upward transitions, For gy
upward transition to occur, the energy gained by the atom must be balanced by
a loss of energy from the radiation field. This is clearly impossible when the ep.
ergy of the radiation field is already at its lowest possible value. In the special
case of an atom in its ground state, this means that there can be no Spontaneous
transitions at all. Upward transitions cannot occur because energy could not be
conserved, and downward transitions do not occur because there are no lower
states. Thus the ground state of an isolated atom is truly stable.

QI-.:T.L_TB-'_; Atomic Selection Rules

Let us summarize our findings as they apply to an electron in an atom exposed
to radiation (either radiation that is applied externally or just that of the zero-
point fields). The most important effect of the radiation comes from the oscil-
latory electric field of the form & = &ocos wt. (Of course, there is also an
oscillatory magnetic field, but its effect is usually much less important.) Thus,
the dominant perturbation has the form
eéx = edyx cos wt (11.44)

(This is if the electric field points in the x direction. In three dimensions, it can:
of course point in any direction.) If the electron is initially in a state ,,, the?

the probability P(n — m) that at a later time it will be found in a state P
given by (11.43) as

2

P(n—m) o« & (11.45)

/ Ymxih, AV
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Jives the probability of the transition (n—m) if the perturbing electric
- 1d fs in the x direction. If the field is in the y direction, we must simply re-
e o x by y, and so on. And if the perturbing radiation is unpolarized (as is
P_I‘q_r“in}y the case for the zero-point radiation on an otherwise isolated atom),
o t average over all three directions.

As we mentioned earlier, if the matrix element in (11.45) is zero, we say
(he transition (n— m) is forbidden, meaning that at least within the ap-
I.Uxims:llions that led to (11.45) the probability P(n — m) is zero. It is some-
{mes surp_ri.singly easy Lo show that this is the case. For example, suppose
(hat the i‘mnal state i, is an y state (with / = 0) and suppose that we are in-
[creﬂwd in the possibility of a transition to another s state s,,. In this case
poth of the wave functions in (11.45) are spherically symmetric. Therefore,
(he contribution to the integral from any point (x, y, z) is exactly cancelled
wy the contribution from the point (—x, y, z), and the whole integral is
ﬂummaticaﬂy zero. That is, all transitions from one s state to another are for-
pidden (meaning in practice that such transitions are anyway extremely im-
srobable). This is a particular case of a more general selection rule that any
jransition (n—m) is forbidden, unless l,, — I, = £1, a rule that we usually

state as:

[|‘[ilE

any transition (n — m) is forbidden unless Al = 1 (11.46)

The proof of this selection rule is beyond our scope here, but is illustrated by
some simple cases in Problems 11.26, 11.30, and 11.31. The rule is easy to un-
derstand if we recall that the photon has spin 1. (That is, it has an intrinsic

angular momentum of magnitude \/s(s + 1)k with s = 1.) This means that
when a photon is emitted by or absorbed into an atom, it must change the
atom’s angular momentum by 1 unit, as in (11.46). (This is actually a quite sub-
tle argument — see Problem 11.31.)

The selection rule (11.46) is illustrated in Fig. 11.5, which shows some of
the allowed (that is, non-forbidden) transitions in the hydrogen atom. While
there are many such allowed transitions, there are even more that are forbid-
den. For example, all transitions of the form s — s are forbidden (as we proved
above) and so are any of the form s <> d or s <> f. Similarly, both p— p and
p< f are forbidden. We can express all this compactly by saying that a state in
one column of the energy-level diagram can make transitions only to states in
one of the adjacent columns. In particular, s states can make transitions only to
p states. Other examples of selection rules appear in Problems 11.25, 11.27,

n=6 — !
nes e 77
< FIGURE 11.5

fseries ~ Some of the allowed transitions
observed in the hydrogen atom.
. Note that each involves a change of
diSSHIES [ by one unit, as is found to be the
case for all allowed transitions.
Note also that the traditional labels
s (sharp), p (principal), d (diffuse),
and f (fundamental) were originally
applied to transitions, not levels.

s serie:
n=2

n=1
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FIGURE 11.6

Incident radiation stimulates a
transition from an excited state to a
lower state. The emitted radiation

is exactly in phase with the incident
radiation.

and 11.30. For reference, we have collected together some of the more fi
tant selection rules in Table 11.1. oy

TABLE 11.1

Some of the selection rules that apply to transitions of electrons in an aton Fie
is stated in the form of a condition that must be metif a transition is to be allowey :l“c
s, occur with significant probability). For example, the first rule, Al = + 1, megn. hyy

dapg
only transitions for which A/ = lp — &, = 41 are allowed. The quantum ny,

14
by
identifies the magnitude of the total spin of all the electrons; similarly Jii };iv:\: iy
magnitude of the total angular momentum S(L+ 8). " the
Quantum Number Selection Rule Reference
[ (magnitude of L) Al = +1 Eq. (11.46)
m (z component of L) Am = 0 or +1 Problem 11 3
Sot (total spin E S) Asiy =0 Problem 11 25
Jiot [total spin + orbital (L + S)]  Ajir=0o0r +1 Problem 11 27
—

Metastable States

Looking back at Fig. 11.5, you can see that the 2s level of hydrogen has ng 4.
lowed downward transitions because there is no / = 1 level below the 2s Jeyel,
This would seem to imply that the 2s state is perfectly stable. In fact, ther
exists other processes that de-excite the 2s state, such as a collision with othe;
atoms.* However, these processes all occur very slowly, and the lifetime of the
2s state is exceptionally long. There are many other atoms that have similar ey.
cited states with no allowed downward transitions. Wh en this occurs the long-
lived excited state is called a metastable state. These states are important in
the operation of many lasers, as we see in the next section.

.

1

Lasers

]
9 Lasers

are made possible by the abstruse-seeming phenomena of stimulated
emission and metastable states. Today lasers play such a large role in our lives
it is hard to imagine life without them. In the last two sections of this chapter
we will describe how several kinds of lasers work and discuss briefly some of
their uses,

The process of stimulated emission is illustrated in Fig. 11.6. A single
photon of the correct frequency can stimulate an excited atom to drop to 4
lower level and emit another photon of the same frequency. If there are many
excited atoms present, each of these two photons can go on to stimulate two
more emissions, producing four photons in all. As long as the majority of
atoms are still in the excited state, this process can conlinue in a cascade, giving

1 photon — 2 photons — 4 photons — 8 photons — - - -

and so on. In other words, the process of stimulated emission can produce 2
dramatic amplification of a beam of photons. The laser is a device that exploits

——

* Another such process, which occurs even in isolated atoms, is the simultaneous emis-

sion of two or more photons, but this occurs extremely rarely.

)
L)
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 sossibility to amplify light of a definite frequency. The name laser is an
li":" aym for “Light Amplification by the Stimulated Emission of Radiation.”
8 stimulated emission the time dependence of the oscillation induced in
, atom is in lockstep with the stimulating radiation. This means that the
d radiation is exactly in phase with the radiation causing the transition,
sested in Fig. 11.6. This coherence of the emitted photons means that
e‘ I.é,.,-uiting light wave is an almost perfect sinusoidal wave. This contrasts
ith the incoherent light from ordinary sources where the phase of each
“10”1'5 radiation is random with respect to all the others. It can also be shown
3131 this c_ohcrcncc means that the laser beam can have a very well defined
jon In space.
We have described the amplification of light in a laser as caused by stim-
u!ﬂwd emission from excited atoms. Normally, however, most atoms are in
(heir ground state, and radiation that strikes atoms in their ground state will be
ilhso['bt‘.d, not amplified. To achieve amplification, we must arrange that a ma-
ority of the atoms are in an excited state. This reversal of the normal popula-
iion of the levels is called a population inversion. Different lasers use different
qeans to achieve population inversion, as we describe in the following ac-
counts of some important types of lasers. Some lasers produce short pulses of
light, while others produce a continuous beam. Since the details of operation
of these two types are somewhat different, we describe them in turn, starting
with the pulsed laser.

g
qitté

45

digeﬂ

Pulsed Lasers

The first successful laser for visible light* was a pulsed laser, developed by the
American physicist Theodore Maiman in 1960. The essential element of this
laser was a ruby rod containing chromium ions, which have a metastable state
1.79 eV above the ground state. Transitions between these two states prodiice
photons with a wavelength A = 694 nm, in the deep red portion of the visible
spectrum.

The general design of the ruby laser is shown in Fig. 11.7. In the first step
of operation, a brilliant burst of light from a flash lamp causes most of the Cr

/ Flash lamp

Rl(ljby Partial
ro \ / mirror
Mirror—__(f i Laser

Energy-storage
capacitance

Power supply
N | | l | I
T

—_——

*We should mention that the first use of stimulated emission to amplify any kind of
radiation was with microwaves. Devices that amplify microwaves in this way are called

masers.
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Charles Townes
(born 1915, American)

The principle of the laser was first
developed for microwaves, the cor-
responding device being the maser
(an acronym for Microwave Ampli-
fication by Stimulated Emission of
Radiation). Townes had a large part
— both theoretical and practical
— in development of the maser.
He also contributed substantially
to the laser (which amplifies light).
Both masers and lasers have revo-
lutionized almost every branch of
science; for example, the maser is
the basis of the atomic clock. For
his role in all this, Townes shared
the 1964 Nobel Prize in physics. In
the photo, Townes is standing
next to a maser amplifier for radio

astronomy.

FIGURE 11.7

Schematic drawing of a pulsed ruby
laser. The flash lamp excites Cr ions
in the ruby rod. The mirrors cause
light to reflect back and forth in the
rod to increase the probability of
stimulating further emission. One
mirror is not 100% reflective, so
some light escapes to form the
external beam.
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FIGURE 11.8

The relevant levels of the
chromium ions in a ruby laser are:
(1) the ground state, (2) the
metastable state at 1.79 eV, and (3)
a short-lived state. (a) Absorption
of flash-lamp light elevates many Cr
ions to the short-lived state, which
promptly decays to the metastable
state, where a large population
builds up. (b) The process of
stimulated emission then causes
the laser transition to occur in
many Cr ions.

Theodore Maiman
(born 1927, American)

After getting his BA from the Uni-
versity of Colorado and his PhD
from Stanford, Maiman joined the
Hughes Research Laboratory in
Miami, where he developed the
first working laser in 1960.He sub-
sequently founded several inde-
pendent companies, one of which,
Korad Corporation, became the
leading developer and manufactur-
er of high-power lasers.

P .
(short-lived) 4
2 ) -
(metastable)
1 B | \
groun Pumpin asin,
(ground) ping Lasing
(a) (b)

ions in the ruby rod to be excited out of their ground state. The majority
these excitations populate a short-lived state that makes a prompt transitj,
to the metastable state at 1.79 eV, as shown in Fig. 11.8. (The process of Moy
ing the ions from their ground state to the metastable level is called Pumping
Because the metastable level is relatively long-lived (about 4 ms) a majority o
the Cr ions are caught, briefly, in this level. Once the number of ions in 1,
metastable state is greater than the number in the ground state (N, > N,
any light produced by a spontaneous 2 — 1 transition is amplified by stimu]g;.
ed emission from the excited ions it encounters. As this amplified light sweeps
through the rod, it rapidly de-excites many excited ions and forms an intenge
short pulse of light. This cascade can occur only if there is a population inveri
sion (N, > M), for if N, = Nj, then absorption exceeds or equals emission,
killing the amplification process. When the majority of the ions have returned
to their ground state, the entire process can be repeated.

To give the light ample opportunity to stimulate emission, it is reflected
back and forth along the rod, whose ends are polished and silvered to form
two mirrors. * One of these mirrors is made partially transparent to allow light
to escape and form the external beam of laser light. In the original laser the
xenon flash lamp was powered by a capacitor bank of several hundred micro-
farads charged to several kilovolts. The principal parts of this laser can be seen
in the photograph in Fig. 11.9.

There are three major differences between the pumping light from the
flash lamp and the light produced by the laser action itself. First, the flash lamp
emits a broad range of wavelengths (white light), while the laser light is con-
centrated in a narrow spectral line at A = 694 nm. Second, the flash lamp light
is incoherent, while the laser light is coherent. Third, the flash lamp light radi-
ates in all directions, whereas the laser beam can be designed to have a narrow-
ly defined direction in space — an important property in many applications.

Since the development of the ruby laser, a variety of other materials
have been found that can be pumped to a metastable level and used to make
pulsed lasers. These lasers vary widely as to total energy and pulse length. For
the ruby laser, a representative value for the energy of a single pulse is on the
order of 10 J. Since each pulse has a typical duration of ordert 100 s, this
gives an instantaneous power of order 100 kW. This high instantaneous power

e

*The distance L between the mirrors must satisfy the condition L = nA/2, to ensur®
constructive interference of the multiple reflected waves.

T As we discuss in Section 11.10, this pulse is really a cluster of much shorter pulses.
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FIGURE 11.9

The original laser, built by Maiman at
the Hughes Research Lab. The ruby
rod, about 1 ¢cm in diameter, can be
seen inside the coiled flash lamp.

isthe basis of many laser applications: Small pulsed lasers are used in medicine
{0 cause coagulation and to suture tissues by forming tiny scars, Larger lasers
are widely used in industry for welding, perforating, and machining. Yet larger
gersions are being investigated for military use.

Continuous Lasers
Continuous Ldsc?>

For many purposes, it is convenient to have a continuous wave of laser light.
Most continuous-wave (or CW) lasers use four levels, instead of the three lev-
els used in the ruby laser. This avoids an important problem with any three-
level laser: In a three-level laser, more than half the atoms must be excited out
of their ground state to achieve the necessary population inversion, with
N, > Nj. Since nearly all atoms are normally in the ground state, a great deal
of energy must be supplied by the pumping flash to accomplish this. A four-
level laser greatly reduces this requirement by making the lower level of the
laser transition an excited state which is normally empty. As shown in
Fig. 11.10, the laser transition from level 3 to level 2 avoids the heavily popu-
lated ground state so that the condition of population inversion (N; > N, in
this case) is more easily achieved. Because of their lower power requirements,
such lasers can operate continuously.

A popular type of continuous four-level laser is the helium-neon laser.
This uses a mixture of helium and neon gases and produces red light with
A = 633 nm. The uppermost level of this laser is in the helium atoms, and the
other three are in the neon, as shown in Fig. 11.11. The He atoms are pumped
by high-speed electrons rather than by a flash lamp. This is achieved by a

Pumping

4 s

3 0 l —— Rapid decay to
metastable state

Excitation — ————— Laser transition FIGURE 11.10
In a four-level laser the laser
¥ transition is between levels 3 and 2.

2 Since few atoms are in level 2, the
Decay back to condition N3 > N, is readily

1 f ground state achieved.
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FIGURE 11.11

The level initially pumped in the
He-Ne laser is in the He atoms.
Collisions transfer this energy to a
level in the Ne atoms, which then
produce stimulated emission,
terminating in a nearly empty
excited state.

Gas-filled glass tube

Mirror| —Electrodes—

FIGURE 11.12

Key components of an He—Ne laser
are the gas-filled glass tube, mirrors,
and power supply.

Partially
Lransmitting
mirror

He levels Ne levels
Excited state =
Transfer by
collisions —Laser
transition
Excitation by —
electric Decay back
discharge to ground
state

Ground state

steady electric discharge (like that in a neon sign) within the He-Ne¢ Mixty,
The energetic electrons in the discharge strongly excite a metastable level il._
He whose energy is very close to one of the excited levels of Ne. In cullisionn
between the excited He atoms and unexcited Ne atoms, there is a high pmh;ﬁ
bility for transfer of the excitation energy, with the He atom dropping 1'“
ground state while the Ne atom is excited. (The upper level in Ne is not \n
readily excited directly by fast electrons, hence the need for He and the traps.
fer process.) The laser transition occurs in the Ne, producing the characterig,
red light at 633 nm.

Not many atoms are required to be in the uppermost Ne level becauge
the level below it rapidly empties by a fast transition to the ground state. The
condition N; > N, is therefore achieved with only modest power require.
ments for the electric discharge.

Figure 11.12 is a schematic of an He-Ne laser. The gas mixture fills 5
glass tube fitted with electrodes to produce a continuous electric discharge. As
in the ruby laser, mirrors reflect light back and forth to increase the opportu.
nity for stimulated emission. The external beam passes out through one of the
mirrors, which is partially transmitting. Typical small models produce a light
beam with a power of 10 W and consume a few watts of electric power.

Applications

The advent of the laser has totally transformed research in many branches of
science. The sharply defined frequency of laser light has made possible mea-
surements of quantized energy levels in atoms, molecules, and solids, with
unprecedented accuracy. Because laser light is so intense, measurements can
be made with very small samples — transitions in single atoms have even
been observed. Using lasers with pulses that last just a few femtoseconds
(1fs = 107 ), chemists can follow the detailed evolution of chemical reac-
tions. The momentum of the photons in a laser beam can be used to cool a gas
to temperatures of order 107% kelvin (Chapter 13), but also to confine the
plasma in a fusion device at higher than 10° kelvin (Chapter 17).

Lasers also allow extremely accurate measurements of distances. For
example, in the lunar ranging experiment, the distance from the earth to the
moon is measured by timing the round trip of a laser pulse that is fired at the
moon and reflected back by a mirror placed there by Apollo astronauts; i
this way changes in the earth-moon distance of a few centimeters can be de-
tected. Similarly, geophysicists can monitor the extremely slow motions of
the tectonic plates that comprise the earth’s crust. Laser interferometers (de-
scribed in Section 11.10) allow length measurements with accuracies Of
order one hundredth of the wavelength of light (that is, accuracies of a fe¥
nanometers). With the help of lasers, the speed of light can be measured 50
accurately that it has now become a defined constant, in terms of which the
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er is specified. And lasers play an essential role in the atomic clocks on
sl ‘.“.U our timekeeping system (an essential part of the global positioning
\-.fhl"-*‘m) depends.
5t we have already mentioned some commercial applications of lasers, and
 casy to list more — in communications using optical fibers, in sound
itr rding using compact discs, in computing, and so on. In medicine, lasers are
f"'wi for cancer therapy and for welding tissue (in the human retina for exam-
”Sfc To conclude, we mention just one more application, the laser gyroscope,
7 has replaced the conventional gyroscope in many commercial aireraft

hich otk
Whi®  Jeseribed in Fig. 11.13,

ond isd

ﬁ1 i Further Properties of Lasers*
*This section can be omitted without significant loss of continuity.

Angular Divergence

The directional properties of laser beams depend on the paths followed by
light within the laser cavity (the space between the two mirrors). Fig-
are 11.14(a) shows light reverberating back and forth in a straight line
petween the mirrors as its amplitude is increased by stimulated emission
from excited atoms. A laser operating in this manner is called a single-mode
Jaser. If the laser medium were perfectly homogeneous and the mirrors per-
fectly flat, the external beam from single-mode operation would be nondi-
verging if light were not a wave. However, because of the wave nature of
light, diffraction occurs and causes the light to diverge slightly. The mini-
mum angle of divergence, 80 (defined as the angle from center to first mini-
mum), depends on the diameter d of the beam and is given by the

diffraction relation *

56 ~ (11.47)

>

where ) is the wavelength of light (and 86 is measured in radians). With typical
laser dimensions, the actual angle of divergence 68 is of order 107 rad, which
is extremely small compared with the spreading from most other light sources.
Nevertheless, over large distances, even laser beams suffer appreciable spread-
ing, which reduces their intensity, as we see in the following example.

FIGURE 11.14

— Il =
I 1 -
() / External (@A Iz.iser Qper?ting on only one
Mirtor Partially transmitting  beam mode, in which light r.eﬂects back
mirror and forth along a straight path
\ . between the mirrors. (b) A more
T complicated mode, which produces
|H:—>< light traveling at an (exaggerated)

(b) angle.
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*For a circular aperture, this formula is generally quoted as 66 = 1.22 A/d. For our
purposes of estimation, we have dropped the factor of 1.22.
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FIGURE 11.13

A laser gyroscope, consisting of
three perpendicular, ring-shaped
lasers, all bored in a single 5-inch
cube of glass. Each ring contains
two laser beams, rotating in
opposite directions. The
interference between the two
beams is extremely sensitive to
rotations of the ring, and with three
such rings, the device can be used
like an ordinary gyroscope to keep
track of an aircraft’s orientation.
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' Example 11.5

A single-mode He-Ne laser (A = 633 nm) with an initial beam diam;
— Bt iR A B .. TS - {fi{“
Laser 3 mm has an angular divergence limited only by diffraction. Find the o f
| ; imate diameter of the beam at a distance of 300 m. By what factor ilq t’&
' : intensity reduced at this distance? he
FIGURE 11.15 According to (11.47), 80 ~ MA/d; therefore, as shown in Fig. 11 15 th
The radius of a laser beam at a radius R of the beam at a distance L is > Hie
distance L is approximately
R = L 60. (Because R is much . = ﬂ
o : R~ L&0~
larger than the original beam size, d

we can neglect the latter.)

With L = 300 m, this gives

(300 m) X (6.3 X 107 m)
= ~ 60 mm
3X10%m

Therefore, the beam diameter is about 120 mm.
Since intensity is power per unit area, it is inversely proportional to the
cross-sectional area of the beam. Thus the ratio of final to initial intensitieg g, |

If_Wdi2/4_ d; ZN_l_
de)

L wd?/4

1600

This loss of intensity is sufficiently large that it must obviously be taken intg
account when planning to use lasers over large distances.
| St = ————]

More complex modes, like that in Fig. 11.14(b), can also occur. These
modes produce nonaxial light that increases the angular divergence of the
laser beam; typically, 60 ~ 107 rad. A small aperture can be inserted in the
laser cavity to limit laser action to the axial mode and hence reduce the angu-
lar divergence, but this usually results in a loss of total power.

Time Dependence of Pulsed Laser Beams

In a pulsed laser the flash lamp that initiates the pulse usually produces its
white light over a period of several hundred microseconds, as shown in
Fig. 11.16(a). The output of the laser generally consists of a series of spikes, as
in Fig. 11.16(b). The occurrence of these brief spikes is easily understood.
Initially, in the first 100 us or so, N, < Nj, so laser action cannot occur. Only
spontaneous emission, which is incoherent, occurs during this time. When N

Laser
Flash lamp output
z z2
FIGURE 11.16 g 5
(a) The flash-lamp intensity in a 8 =
pulsed laser typically lasts several J
hundred us. (b) The output of the | | I : O
'a:?r contains a Wieald backgiotind 100 200 300 400 100 200 300 400
of incoherent spontaneous emission £ (us) — ()

and a series of intense spikes of

coherent light. (a) (b)
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yexceeds N, laser amplificalinn hcsTin&‘ and the light level within the cav-

f‘"ll pilds rapidly. In fact, a “runaway™ occurs because the rate of stimulated

15"'”” grows as the amplitude of the radiation increases. Very quickly, then,

 Jecreases until M; << N, and laser amplification ceases, typically in a frac-

10| a microsecond. However, the pumping radiation from the {lash lamp is

e ill sresent and again causes N, to increase until Ny > Ny, producing another

Jike- This process continues until the level of pumping radiation falls below
:,;L which can make N greater than N,

9,5witching

The size of the pulses produced by a ruby laser is limited because laser ampli-
{sm'““" l)cgms as soon as N; > N and ends quickly when N, drops back to
Ny . Ny. Larger pulses could be produced if N, could be greatly increased be-
ore laser amplification begins. This can be accomplished by preventing ampli-
(ication temporarily until N, is large and then permitting laser action Lo oceur.

This method of producing single, very intense pulses is called Q-switching. The
name originates in the term quality factor, generally abbreviated as Q. This pa-
rameter is a measure of the time light can reverberate within the laser cavity
pefore it dies away. * If Q is large, the light loses energy (by scattering, for ex-
ample) slowly and hence is easily able to stimulate laser amplification. If Q) is
small, the light loses energy quickly, and if @ is sufficiently small, laser action
does not occur.

In the lasers described so far, the cavity is designed with high Q by using
low-loss mirrors and a clear laser medium so that laser amplification is easily
achieved. This causes laser action to begin very soon after N, > N, and limits
the size of the pulse. However, if the Q of the cavity is reduced to a low level,
laser action cannot occur even with all the atoms in the excited state. A very
large pulse can then be produced by abruptly increasing Q (hence the name
“Q-switching”).

A variety of schemes are used for the temporary reduction of Q. The sim-
plest method to understand uses a rotating mirror for one of the cavity mirrors
as sketched in Fig. 11.17. The laser cannot operate until the mirrors are parallel.
The flash lamp is fired a few hundred microseconds before the mirrors become
parallel, so that the metastable level becomes highly populated. The pulse that
occurs when the mirrors become parallel rapidly drains the population of level
2, producing a single extremely intense pulse. Figure 11.17(b) shows the pulse
produced by a laser of this type with a peak power of 100 MW. (The peak
power of such lasers can be as large as thousands of megawatts.)

Another Q-switching technique uses a dye contained in a transparent
cell that is placed between the ruby rod and one of the mirrors. The color of a
dye is due to its absorption of light at wavelengths corresponding to the ener-
gy difference between its ground state and a group, or band, of excited states.
By use of a dye that absorbs strongly at the laser wavelength, Q is reduced so
much that laser action cannot occur. However, after the flash lamp has operat-
ed for some time, virtually all of the dye molecules have been excited out of
their ground state, so that absorption ceases.” At this point the dye becomes
transparent, increasing Q, and a very large laser pulse occurs.

*More precisely, Q is-the ratio of the total energy in the cavity to the energy lost
Per cycle.

A dye with this property is called a saturable dye and is said to have been bleached by
absorption.
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FIGURE 11.17

(a) One type of Q-switching uses a
rotating mirror, which prevents

laser action until the instant the

two mirrors are parallel.
(b) Oscilloscope trace showing
output power against time for a
laser of this type.
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Coherence Length

To conclude this section, we return to the property of coherence of lasey li
compared to light from other sources. In particular, we introduce the N0jg,, iy
coherence length as a measure of this property. To better understand the Nog o
of coherence, let us consider first a perfectly sinusoidal wave. Such g Waye loy
the property that its oscillations at any one point A are perfectly cotrelatg 3
coherent, with the oscillations at any other point B no matter how far 4 is ﬁ_;:lr
B. This means, for example, that if the distance AB = nA (with »n an inte j“
small or large), the oscillations at A and B are exactly in step; and if we ¢, 10 |
somehow combine the waves from A and B, we would obtain perfectly . !
structive interference. Similarly, if AB = (,-: ¥ %)A, the oscillations at 4 ﬁﬂd;; '|
are exactly out of step and, if combined, would interfere perfectly destruct‘wel
No real wave is perfectly sinusoidal. Among other things, it is foung thai {
light waves from most sources are produced with continual random shif(s i thej, ?
phase. (For instance, in an ordinary light filament, photons emitted in diff erentye,
gions are totally unrelated and have random relative phase.) This means that the |
relative phase of the oscillations at any two points A and B is continually and g,
domly changing. As one might expect, these random fluctuations are small if 4
and B are close together, but become steadily larger as the distance AB incregs. |
es. Thus if AB = nA with n equal to a small integer, the oscillations at A and p i
remain very nearly in step and, if combined, would interfere almost completely
constructively. On the other hand, if AB is sufficiently large, the relative phase of
the oscillations at A and B fluctuates by 180° or more. In this case, even if AR jg
exactly nA, the oscillations at A and B will sometimes be in step and sometimes
completely out of step. If combined, these waves would interfere, sometimes
constructively and sometimes destructively. Since the fluctuations are rapid, the
observed intensity would be the average of the maximum and minimum inten-
sities (namely, half the maximum). Evidently, once the distance AB is large
enough, we would get this same result whether or not AB = n). Under these
conditions we say that the oscillations at A and B are no longer coherent. Roughly
speaking, we are going to define the coherence length of a wave as the largest
distance AB for which the oscillations at A and B are still coherent. '
We can test these ideas using a Michelson interferometer, as sketched in
Fig. 11.18. The half-silvered mirror splits the beam into two parts, which travel
out and back along arms of lengths /; and /,, and are then recombined and mea-
sured by a photocell. Since the two waves started as a single wave and traveled

Mirror

Half-silvered mirror

Source # — 2= Mirror

FIGURE 11.18
A Michelson interferometer. Light

is split into two beams, which travel \
different distances, 2/; and 2/,
before recombining.

D—— Photocell
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distances that differ by A = 2(/; — k), the photocell is in effect measuring the
superposition of the oscillations at two points, A and B, in the same wave, the
distance between A and B being the path difference A. By varying the length of
either arm, we can study the interference as a function of the distance AB = A.

If the original wave were perfectly sinusoidal, then as A increases, the ob-
served intensity would alternate between maxima, all of the same height I,
and minima, I,;, = 0, as in Fig. 11.19(a). These alternations would continue no
matter how large we made A. In reality, the wave is not perfectly sinusoidal
and the situation is as shown in Fig. 11.19(b). When A is small, the intensity al-
ternates between I,,, and 0, much as in Fig. 11.19(a). But as A increases, the
two waves begin to lose their coherence, and the maxima begin to shrink and
the minima start to grow. Finally, as A — 00, the contrast between the maxima
and minima disappears entirely, and / approaches the constant value Toax/2.

It is clear from Fig. 11.19(b) that one cannot define a unique coherence

: length A, beyond which the two waves abruptly lose their coherence. Rather,

the coherence fades out continuously, and one can, for example, define A. as
the distance at which the difference between successive maxima and minima
has dropped to the value I,x/e. This is the definition indicated in Fig. 11.19(b).

Before the advent of lasers, the coherence length of typical light sources
was less than a millimeter or so, although lengths of order 10 cm could be
achieved with difficulty. Since the coherence length of lasers can easily exceed
1 km, they have enormously increased the usefulness of interferometers for
measuring distances. In a typical application one arm of the interferometer is
kept fixed while the mirror on the other is moved through the distance that is
to be measured. In this way, distances can be measured to a fraction of a wave-
length. However, since interference cannot be observed once A is much more
than A_, the distances that can be measured cannot be much larger than A..
Therefore, the laser has increased by many orders of magnitude the distances
Fhat can be measured using interferometers. Perhaps equally important, laser
interferometers can measure displacements of objects that are far removed
from the interferometer (and hence have I, >> I}), as with the arrangement
shown in Fig. 11.20.
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FIGURE 11.19

Intensity I as a function of path
difference A in a Michelson
interferometer. (a) If the light
source were perfectly coherent, /
would alternate between I, and O
and back to I, each time A
increased by one wavelength.

(b) For any real source, one finds
that as A increases, the coherence
diminishes and the difference
between the maxima and minima
slowly decreases. The coherence
length A, can be defined as the
value of A for which this difference
has decreased to I ../e.
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FIGURE 11.20

In this laser interferometer one of
the paths is inside the device while
the other extends to a mirror
attached to the point whose
displacement is to be measured.
This photo shows a reading of

1 microinch, the displacement of
the |-beam caused by the weight of
a penny.
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Radiation from a classical charge

P = 2kq%a*/3c* (11.1)

Inevitable collapse of classical atom

Lifetime ~ 10715 (11.4)

Absence of radiation from stationary
states

Static charge distribution (Sec. 11.3)

Transitions caused by perturbations

Upward = absorption of a photon
Downward = emission of a photon

Hamiltonian operator

R &

I (11.11) (with suitable generalizations)

+ U(x)

Time-independent Schrédinger equation

Hy = Ey (11.13)

Time-dependent Schrédinger equation

oV /ot = H¥  (11.16)

Completeness of the stationary-state
wave functions

Any y(x) = D Apa(x) (11.20)
|A,/> = probability of finding system in state i,

Ay = [Unwdx (11.24)

Orthogonality

SWithudx =0 form #n (11.23)

Normalization

S dx =1

Time-dependent perturbation theory

Theory of transitions due to a perturbation W (Sec. 11.5)

Transition probability

P(n—m) o | [y Wi, dx|* (11.40) and (11.43)

Stimulated emission

Emission of a photon in a downward transition
stimulated by applied radiation

Spontaneous emission

Emission of a photon in a downward transition of an isolated
atom “stimulated” by the vacuum fluctuation fields
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Any general rule specifying forbidden transitions (Table 11.1)

An excited state with no allowed downward transitions (Sec. 11.8)

Pulsed and continuous  (Sec. 11.9)
Angular divergence, time dependence, (Q-switching, coherence

length (Sec.11.10)

T

ROBLEMS FOR CHAPTER 1 i

5&67"3” 11.2 (Radiation by Classical Charges)

s A charge ¢ executes simple harmonic motion with po-
gition x = Xg sin wf. (a) Find P, the total power of the
radiation emitted by this oscillating charge. (b) Show
(hat the average power over one complete cycle is

2

1.1

_ kq*w*xg

33

(P)

y1.2 ¢ In the antenna of a TV or radio station, charges 05-
cillate at some frequency f and radiate electromag:
netic waves of the same frequency. As a simple model
of such an antenna, imagine that a single charge
g = 250 nC is executing simple harmonic motion al
100 MHz with amplitude 03 m. (I1nC= 1077
coulomb.) Use the result of Problem 11.1 to calculate
the average total power radiated by this antenna.

113 © A certain cell phone transmitter radiates 3 W of
power at about 900 MHz. (a) Find the rate of emis-
sion of photons by the transmitler. (b) In this case is
there an appreciable difference between the correct
quantum view and the classical picture in which the
radiation is emitted continuously?

11.4 » Carry out the calculation of Example 11.1 using SI
units throughout. [Note: If you use a calculator and ex-
ceed its maximum exponent range (usually 10*%), you
should calculate the mantissa and exponent separately.]

115 es The formula (11.1) for the power P radiated by an
accelerating charge g can be derived by the method
of dimensional analysis. Since P would be expected Lo
involve k, ¢, a, and ¢, we might reasonably guess that
it should have the form

P = bk'q™a"c” (11.48)

where b is some dimensionless number of order 1
(perhaps something like 4m) and whete [, m,n, and p
are unknown powers (and k is the Coulomb force
constant = 9 X 10°N+m?-C?). By inserting their
units into the five dimensional quantities in (11.48),
you will get an equation that determines the un-
known powers /, m, n,and p. Show that you obtain the
correct form (11.1), except that the dimensionless
number b cannot be determined.

1.6 we The result (11.3) shows that a classical atom would
collapse very rapidly. To get a very rou gh estimate of
the time for a hydrogen atom to collapse completely,
do the following: (a) You can find the rate at which
the radius 7 shrinks,

dr dr dE

—= 149
dt dE dt ( )

with dr/dE determined from (5.10) and dEjdt = —P.
Find dr/dt when r = ag. (b) Making the admittedly
crude approximation that dr/dt remains constant,
estimate roughly how long the electron takes to spiral
in from r = ag to r = 0. (For a more realistic esti-
mate, see Problem 11.15.)

e Many particle accelerators, including the cyclotron
and the synchrotron (Sections 17.11 and 18.11), hold
charged particles in a circular orbit using a suitable
magnetic field. The centripetal acceleration, a = v/r,
can be very large and can lead to serious energy loss
by radiation, in accordance with Eq. (11.1). (a) Con-
sider a 10-MeV proton in a cyclotron of radius 0.5 m.
Use the formula (11.1) to calculate the rate of energy
loss in eV/s duc to radiation. (b) Suppose that we
tried to produce electrons with the same kinetic ener-
gy in a circular machine of the same radius. In this
case the motion would be relativistic and formula
(11.1) is modified by an extra factor* of s
22,4
P= M (11.50)
3c

Find the rate of energy loss of the electron, and com-
pare with that for a proton. (Your answer for the elec-
tron should be enormously larger than for the proton.
This explains why most electron accelerators are lin-
ear, not circular, since the acceleration in a linear ac-
celerator — once v ~ ¢ — is far smaller than the
centripetal acceleration copsidered here.)

e Answer the same questions as in Problem 11.7, but
assume that both the proton and electron have kinet-
ic energy 10 GeV and move in a circle of radius 20 m.
[In this case both particles are relativistic and you
must use the relativistic formula (11.50).]

ee The ring called PEP-II at Stanford in California
stores electrons orbiting around a circle’ of radius
170 m. Because of the centripetal acceleration,
a = v%/r, the particles lose energy in accordance with
Egq. (11.50) [which is the appropriate relativistic form
of Eq. (11.1)]. (a) Find the rate of energy loss of a sin-
ple 9-GeV electron, (b) Ifa total of 2 X 10'? electrons
are radiating at this rate, what is the total power, in
watts, needed to keep them at 9 GeV? (For compari-
son, the power used by a typical household appliance
is on the order of 100 W.)

*Note that this is for the case of circular motion. For linear
motion the factor is y°.

t The actual device contains both curved and straight sec-
tions but is reasonably described as a single circle for the
purposes of this problem.
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11.10 ## Figure 1121 shows an electric field line from a
charge g that was kicked abruptly from rest and has
moved a distance d. The kink in the field line occurs
between rand r + Ar, where r = ¢t and ¢ is the time
since g was kicked. The radiation from g is carried by
the transverse component of &, shown as &, in the
picture. Prove that as a function of 6, &, is propor-
tional to sin 6. (This means that the maximum radia-
tion is at # = 90° and there is no radiation at 8 = 0.
For this reason, broadcasting antennas are oriented at
90° to the direction in which they need to transmit.)

FIGURE 11.21
(Problem 11.10)

11.11 ¢ (a) A classical point charge q of mass m is in a cir-
cular orbit of radius r around a fixed charge Q (with g
and @ of opposite sign, of course). Starting from
Eq. (11.1), derive a formula for the radiated power P
in terms of g, m, r, and Q. (b) By what factor is P
changed if we double g (leaving m, r, and Q un-
changed)? (¢) What if we double Q (with m, r, and q

without making that approximation, as follgy,

Eq. (11.49) to find dr/dt, the rate at whigl, th 3 l:a,.E
shrinks, as a [unction of r, and find the limg j.L Oy
classical atom to collapse entirely, by evaly

0
Ar = / _dr_
Jag dr/dt

1Op
a‘“‘k ”11*.

SECTION 11.4 (More Quantum Formalism *)
11.16 » The Hamiltonian operator is often deseribeg

linear operator because it has the linear Properyy "‘ i
H[Ap(x) + B(x)] = AHp(x) + BHp(x) g0 hy
two functions (x) and ¢(x) and any two "Uhgfm!'
numbers A and B. Prove that the one-dimepg;, )
Hamiltonian (11.11) is linear. g

11.17 e+ Show that the wave functions (11.21) for the ing

nite square well satisfy the orthogonalit

y pr0pet
that foadfm(x)*:/fn(x) dx = 0form # n. R

SECTION 11.5 (Transitions; Time-Dependent

Perturbation Theory*)

11.18 ¢ (a) The first excited state of the sodium atom i

2.11 eV above the ground state. What wavelengih ra.
diation can cause transitions between these twg ley.
els? What sort of radiation is this? (visible, uv, ele.?)
(b) Answer the same questions for the two 2p leyels
in hydrogen, which are shown in Fig. 9.7 and ape

unchanged)? 4.5 X 1075V apart. (This is the fine-structure split-
11.12 ¢= One of the difficulties with classical models of the ting discussed in Section 9.7.) (c) Answe7r the same
atom was that they failed to predict the correct fre- questions for the lowest two levels of the "Li nucleus,
quency for the radiation emitted. According to classi- which are 0.48 MeV apart.
cal electromagnetic theory, the frequency of emitted 11.19 » The atoms of a certain monatomic gas have five ener-
radiation should equal the frequency of the orbiting gy levels: £y = 0, E, = 54, E; =82, E,; = 8.6, and
electron. (a) Calculate the orbital frequencies, Forn(1) E5 = 12.4, all measured up from E; in eV. (a) If in-
and f,+(2), of a classical electron in the #» = 1 and frared light with wavelengths in the range from 3000 to
n = 2 Bohr orbits of a hydrogen atom. (b) Now find 3200 nm shines through the gas, what transitions could it
the frequency f, (2 — 1) of the actual photon emitted cause? If the gas was so cool that all atoms were in the
in the 2—1 transition. Show that f,(2—1) is not ground state, would you expect to observe these transi-
equal to either f,(2) or fon(1) (or their average or tions? (b) Answer the same questions for UV with
their difference). (¢) It turns out, however, that as wavelengths from 95 to 105 nm. (¢) What wavelength
n — 00 the orbital frequency f,(n) of the nth orbit light could de-excite the atoms from level 3 to level 2!

does approximate the frequency f,(n—>n — 1) of a
photon emitted in the transition (n — n — 1). Prove
that fo,(n) = Eg/(whn®). Derive an expression for

»(n—n — 1), and show that it approaches f,(n)
as n— 0o, (This result — called the correspondence
principle — played an important role in the develop-
ment of the Bohr model.)

11.20  The wave functions for an infinite square well, with
edges at x = 0 and x = q, are given in (11.21). Prove
that if we move the origin to the middle of the well
these same functions are as given in (11.34) and
(11.35). (Actually, some of the new functions differ by
an unimportant sign from the original ones.)

11.21 oo Confirm the result (11.37) for the probability

P(1—2) for a transition from level 1 to level 2 of the
rigid box, by evaluating the integral (11.36).

11.13 #» Consider the electron in a classical He" ion. Using
the method of Example 11.1, find the radiated power
predicted by the classical radiation formula (11.1) for ; C iy o
a radius equal to that of the first Bohr orbit of He*, 1122 ** Consider an electron that is initially in the first
Compare your result with that predicted for hydrogen. cited state of the infinite square well of Example 11

. . (Sec. 11.5). (a) If an electric field & is switched on 1!
11.14 e+ Using the method ff Problem 11.6, estimate the the x direction, find the probability P(2 — 1) that the
lifetime of a classical He™ ion starting in the n = 1 Bohr

: . electron will be found in the ground state a short time
orbit for He. Compare with the answer for hydrogen. At later. (b) Similarly, find the probability (23

11.15 eee Problem 11.6 estimates the time At for collapse for excitation to the second excited state. (¢) What_ﬂfi
of a classical hydrogen atom, making the approxima- P(2—4) and P(2—5)? Compare these varioV
tion that it shrinks at a constant rate. Calculate At probabilities,




Problems for Chapter 11 365
3ilf(:(ﬁl?w Uy cTioN 11.8 (Atomic Selection Rules) 11.26 #= The general proof of the selection rule (11.46) is
et hee Or| l? g3+ When a quantum wave function W is complex (with b.e)l/ond . scop{e,.but nyLl calrll prokslle it i gew spe-
Valh_dnor thig s poth real and imaginary parts), its probability density . case_s. 1§a) tels aO 2,1,%, t %tf.t S M achion

8 is |[W[*, where [W[ is the absolute value of W, defined Ynim(F) = Ruu(r) O (6)e™ satisfies
by Eq. (6.12) as [¥| = V¥Z, + ¥Z,,,. Prove that Ynim(—1) = (=1)Ym(r)  (11.51)
¥[2 = ¥*V¥, where ¥* is the complex conjugate of [This property is often descrlbed by saying that the
¥. (The complex conjugate z* of any complex wave function has parity (—1).] Use the angular
sm *) numbe& z=x+1iy, w)here x and y are real, is functions listed in Table 8.1 to prove (11.51) for all
defined as z*¥ = x — iy wave functions with { = 0, 1, or 2. (b) The probability
leseribeq ., 4+ The outermost (valence) electron of sodium is in a of a radiative transition (n, [, m = n',l', m’) is given
Property ”1:1[ 12 35 state when the atorzl is in its ground state by (11.45), which now takes the form
lh(x) for an (Table 10.2 in Section 10.7). The valence electron can . 2
two u}nsldl){ be excited to higher levels, the first few of which are P(n,lm—n',I',m') o & /llfn't'm'x‘//ntm avy (11.52)
d'menslona | shown in Fig. 11.22. Given the selection rule that only
those transitions for which Al = +1 are allowed, in- (This is for radiation polarized with & in the x direc-
) for the ; ing;. dicate on this energy-level diagram all allowed transi- tion. For isotropic unpolarized radiation, we must
lity property tions among the levels shown. average over this and the two corresponding expres-
sions with x replaced by y and by z.) Use the proper-
3 4p ty (11.51) to prove that the transition probability
d s 3d (11.52) is zero if I’ = I (whether the integrand is x, y,
ent - - or z). This proves that transitions with Al = 0 are
3p forbidden — a particular case of (11.46).
um atom j, 11.27 e There is a selection rule on the total angular mo-
velength py. mentum (all spins plus all orbital momenta) of an
ese two Jey. 5 atom or nucleus. The total angular momentum is
3, UV, ete.?) b given by a quantum number ji,, and it is found that
Yo 21 levels transitions which do not satisfy Aj, = 0 or +1 are
7 and are FIGURE 11.22 forbidden (that is, very improbable). Further, among
teture split. Some low-lying levels of any one electron in sodium (Problem 11.24). the forbidden transitions the larger the value of Aj;,
T the same the more improbable a transition is. This trend ap-
Lin 15, 11.25 « Figure 11.23 shows some of the lowest energy levels plies to 8 decay in nuclei as well as to radiative tran-
of the He atom. They are labeled by their configuration sitions. Use these facts to explain why an excited state
& five eneg® (for example, 1s2p means that the atom has one elec- of the ®Ta nucleus occurs naturally in measurable
= 8.6, and tron in the 1s level and one in the 2p level). The energy amounts. (See Appendix D.)
7 (a) If in- depends.somewhat on the orientation of the two elec- 11.28 #¢ Consider two energy levels of the helium atom, in
om 3000 to trons’ spins: If the spins are antiparallel, the total spin is both of which the two electrons’ spins are antiparallel
s could it zero (quantum number s, = 0); if the spins are paral- (so that the total spin is zero, and the spins can be ig-
vere in the lel, the total spin has s,; = 1. For a given configuration, nored) and one of the electrons is in the lowest (1s)
lese transi- the state with s, = 1 has slightly lower energy. orbital. In the upper level the second electron has
UV with (a) Explaln why the 1s? configuration has 0111}’ Siot = 0. ! = 2; in the lower level the second electron has
savelength (b) There is a selection rule Asy, = 0, that is, transi- [ = 1. The atom is placed in a magnetic field, and (as
to level 27 tions in which s, changes are forbidden. Indicate all a{- described in Section 9.4) the upper level splits into
well, with ig‘r"’zci :;in:glf(iisoin 311: Zl;eigiilfve(l ()1135; a? (Dfiné five equally spaced sublevels and the lower into three
'1). Prove levgls would you explc-ect to be metz;gtacble? e e e
" the well, ; ! sultlpg levels. (b) There are, in principle, 15 different
.34) and 0 possible transitions from the upper (I = 2) level to
differ by i 1s3p the lower (/ = 1) level. Show that because the sub-
13 ——0— levels all have the same spacing, there are actually
i —1— only seven distinct energy differences. (¢) The selec-
obability :(1): 1s2p tion rules for these transitions are Al = +1 and
12 of the Am = 0 or =+1; that is, only transitions that satisfy
. 125 —0— these rules are allowed. Indicate all of the allowed
 first ex- === transitions on your energy level diagram. (d) How
ple 11.4 many distinct photon frequencies will result from al-
ed on in lowed transitions between the two levels? This is the
that the 12 —0— normal Zeeman effect described in Section 9.4.
ort time 11.29## Carry out the same tasks as in Problem 11.28
(2—3) FIGURE 11.23 with the numbers modified where necessary), usin
/hat ar Some low levels of helium. (These are the energy levels of the Ehe same upper level (I = 2) but with a lov\sller leve%
various Whole atom, not the individual electrons.) The numbers 0 and 1 in which one electron is in an s state and the other in
Ndicate the quantum number 5,4, of the total spin (Problem 11.25). an f state (I = 3).




