Deutsch–Jozsa Algorithm

Alice, in Amsterdam, selects a number x from 0 to $2^n - 1$, and mails it in a letter to Bob, in Boston. Each x has n bits of information.

Bob calculates some function $f(x)$ and replies with the result, which is either 0 or 1.

Bob has promised to use a function of 2 kinds:
- Either $f(x)$ is constant for x, or $f(x)$ is balanced that is equal to 1 for exactly half of all possible x, and 0 for the other half.

Alice's goal is to determine with certainty whether Bob has chosen a constant or balanced function, corresponding with him as little as possible.

How fast can she succeed?
Classically

Alice may only send one value of \(x \) \(n \) each letter. At worst, Alice will need to query Bob \(2^n + 1 \) times, since she may receive \(2^{m/2} \) \(\Theta(2^n) \) before finally getting a \(\Theta(1) \) (\(e \)).

Telling her that Bob's function is balanced.

The best deterministic algorithm she can use therefore requires \(2^{m/2} + 1 \) queries.

Quantum-mechanically, Alice can achieve her goal in just one correspondence.