Suppose \(f(x); \exists 0,1 \Rightarrow \exists 0,1 \) is a function of a one-bit domain and range.

To compute this function on a quantum computer, we consider a 2-qubit \(\mathcal{Q} \) which starts in state \(\ket{0, y} \).

With an appropriate sequence of logic gates, it is possible to transform this state in \(\ket{0, y \oplus f(x)} \), where \(\oplus \) is addition modulo 2.

\[
\begin{array}{c}
\text{data register} \\
\ket{0, y} \\
\text{target register} \\
\ket{0, y} \\
\end{array}
\]

\[
\begin{array}{c}
\text{if } \oplus \text{ unite } \\
\text{if } y = 0, \text{ the final state of the second} \\
\text{qubit is } f(x). \text{ Indeed} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
y & f(x) & y \oplus f(x) \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\hline
\end{array}
\]

Can we use \(y \) for evaluate \(f(0) \) \& \(f(1) \) simultaneously.
\[U_f \frac{10\rangle + 11\rangle}{\sqrt{2}} \otimes 10\rangle = \left\{ \text{10, } f(0) \rangle + 11, f(1) \rangle \right\} \frac{1}{\sqrt{2}} = 14\rangle \]

This is a remarkable state! The different terms contain information about \(f(0) \) and \(f(1) \). It is as if we have evaluated \(f(x) \) for two values of \(x \) simultaneously, a feature known as quantum parallelism.

A single \(U_f \) gate is used to evaluate the function for different \(x \) simultaneously!

How do we generalize the process to an arbitrary number of bits? We use the Hadamard transform! This operation is just \(n \) Hadamard gates acting in parallel on \(n \) qubits.

For \(n = 2 \)

\[\begin{array}{c}
H \\
H
\end{array} \]
\[|\psi\rangle = \frac{1}{\sqrt{12}} \left[|0\rangle + |1\rangle \right] \otimes \frac{1}{\sqrt{12}} \left[|0\rangle + |1\rangle \right] = \frac{1}{2} \left[|00\rangle + |01\rangle + |10\rangle + |11\rangle \right] \]

We write \(H^\otimes 2 \) the parallel action of the 2 Hadamard gates.

More generally, \(|0\rangle \otimes |0\rangle \rightarrow H \otimes H \)

\[
\rightarrow \frac{1}{\sqrt{2^m}} \sum_{x} |x\rangle = \left[2^m \text{ states} \right]^{\text{superposition}} \text{[result in gate]}
\]

\(\Sigma \) is over all possible values of \(x \).

The Hadamard transform produces an equal superposition of all computational basis states in \(\mathbb{C}^m \).

Quantum parallel evaluation of a function with an \(m \) bit input \(x \) and 1 bit output, \(f(x) \), can then be performed as follows:

Prepare the \(n+1 \) qubit state \(|0\rangle^\otimes n |1\rangle \)

Apply \(H \) to first \(n \) qubit with \(U_f \)

\[
|\psi\rangle = \frac{1}{\sqrt{2^m}} \sum_{x} |x\rangle \overset{f(x)}{\rightarrow} H \otimes H |\psi\rangle
\]

\(\triangleright \) Measurement on \(|\psi\rangle \) will give \(f(x) \) for a single value of \(x \). Each term in the sum has an equal probability.
\[H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + 1|1\rangle) \]

\[(H \otimes H \otimes \cdots \otimes H)|00\ldots0\rangle = \frac{1}{\sqrt{2^n}} (|0\rangle + 1|1\rangle)(|0\rangle + 1|1\rangle)\cdots(|0\rangle + 1|1\rangle) \]

\[= \frac{1}{\sqrt{2^n}} \sum_{\alpha=0}^{2^n-1} |\alpha\rangle \]

\[|0,0,\ldots,1,\ldots0\rangle \]

all possible combinations
How do we extract information about more than one value of \(f(x) \) from superposition states like \(\frac{1}{\sqrt{2}} |1, e, f(e) \rangle \)

Deutsch's algorithm

Suppose Alice has 2 bits, 0, 1, she can send to Bob. Bob evaluates some Boolean function of the bit sent by Alice. What are the results that Bob can get?

<table>
<thead>
<tr>
<th>Alice</th>
<th>f1</th>
<th>f2</th>
<th>f3</th>
<th>f4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Only 4 possibilities.

The two functions can be regrouped in two subsets. \(f_1, f_4 \) give the constant value 0 or 1 for the two bits 0 & 1 sent by Alice. \(f_2, f_3 \) gives either 0 or 1 after Alice sends her 2 bits. These are referred to as balanced functions.

Question: Classically, can Alice send either 0 or 1 and find out if Bob selected a constant or balanced function to evaluate \(f(x) \)?

Answer: No, Alice must send both 0 & 1 before being able to answer that question.
If we can find a circuit which can compute \(f_i(0) \oplus f_i(1) \) in one result, Alice will be able to answer the question of a constant or balanced function used by Bob in one result.

How can we use UP to do this?

\[
x = \left[\begin{array}{c|c}
x_1 & x_2 \\
\end{array} \right] \\
y = \left[\begin{array}{c|c}
y_1 & y_2 \\
\end{array} \right] \\
\]

\[
\begin{align*}
(x_1, x_2) = & \left[\begin{array}{c|c}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{array} \right] \quad \text{constant} \\
\end{align*}
\]

\[
\begin{align*}
(x_1, x_2) = & \left[\begin{array}{c|c}
1 & 0 \\
1 & 1 \\
0 & 0 \\
\end{array} \right] \quad \text{balanced} \\
\end{align*}
\]

\[
\begin{align*}
\text{if } f(x) = 0 & \quad \left[\begin{array}{c|c}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{array} \right] \\
\text{if } f(x) = 1 & \quad \left[\begin{array}{c|c}
1 & 1 \\
1 & 1 \\
0 & 0 \\
\end{array} \right]
\end{align*}
\]

\[
\begin{align*}
\text{if } f(x) = 0 & \quad \left[\begin{array}{c|c}
m_x & 0 \\
0 & m_x \\
\end{array} \right] \\
\text{if } f(x) = 1 & \quad \left[\begin{array}{c|c}
m_x & m_x \\
0 & m_x \\
\end{array} \right]
\end{align*}
\]

\[
\begin{align*}
\text{if } f(x) = 0 & \quad \left[\begin{array}{c|c}
\frac{1}{\sqrt{2}} & \left(\begin{array}{c}
0 \\
1
\end{array} \right) \\
0 & \left(\begin{array}{c}
0 \\
1
\end{array} \right)
\end{array} \right] \\
\text{if } f(x) = 1 & \quad \left[\begin{array}{c|c}
\frac{1}{\sqrt{2}} & \left(\begin{array}{c}
1 \\
0
\end{array} \right) \\
-\frac{1}{\sqrt{2}} & \left(\begin{array}{c}
1 \\
0
\end{array} \right)
\end{array} \right]
\end{align*}
\]
These two results can be regrouped into two expressions:

\[|x> = \frac{1}{\sqrt{2}} \begin{pmatrix} 102 - 117 \end{pmatrix} \Rightarrow |y> \Rightarrow (-1)^f(x) |x> \begin{pmatrix} 102 - 117 \end{pmatrix} \]

The **Deutsch's algorithm**

[Diagram of Deutsch's algorithm]

\[|140> = |102 \otimes 117 \]

\[|141> = H |102 \otimes 117 = \left[\frac{102 + 117}{\sqrt{2}} \right] \left[\frac{102 - 117}{\sqrt{2}} \right] \]

\[U_f |141> = (-1)^f(0) \frac{1}{\sqrt{2}} |102 - 117> + (-1)^f(1) \frac{1}{\sqrt{2}} |102 + 117> \]

If \(f(0) = f(1) \) then

\[|141> = (-1)^f(0) \frac{1}{\sqrt{2}} |102 + 117> + (-1)^f(1) \frac{1}{\sqrt{2}} |102 - 117> \]

\[|0> \text{ depending if } f(0) = f(1) = 0 \text{ or } 1 \]

If \(f(0) \neq f(1) \) then

\[|141> = (-1)^f(0) \frac{1}{\sqrt{2}} |102 - 117> + (-1)^f(1) \frac{1}{\sqrt{2}} |102 + 117> \]

\[142> = U_f |141> = \begin{cases} \frac{102 + 117}{\sqrt{2}} \left(\frac{102 - 117}{\sqrt{2}} \right) & \text{if } f(0) = f(1) \\ \frac{102 - 117}{\sqrt{2}} \left(\frac{102 + 117}{\sqrt{2}} \right) & \text{if } f(0) \neq f(1) \end{cases} \]
Finally, the final Hadamard gate acting on the first qubit gives

\[|y_3 \rangle = \begin{cases}
 \pm 10 \left[\frac{10 \pm 1 i}{\sqrt{2}} \right] & \text{if } f(0) = f(1) \\
 \pm 11 \left[\frac{10 \pm 1 i}{\sqrt{2}} \right] & \text{if } f(0) \neq f(1)
\end{cases} \]

but \(f(0) \oplus f(1) = 0 \) if \(f(0) = f(1) \) see table top of pages 5.

So, we can rewrite \(|y_3 \rangle \) more concisely

\[|y_3 \rangle = \pm |f(0) \oplus f(1) \rangle \left[\frac{10 \pm 1 i}{\sqrt{2}} \right] \]

so we have accomplished our goal! By measuring the first qubit we may determine \(f(0) \oplus f(1) \). This is a global property of \(f(x) \)... using only one evaluation of \(f(x) \)! This is faster than with a classical apparatus, which would require at least 2 evaluations.
The Deutsch-Jozsa Algorithm

Alice in Amsterdam selects a number \(x \) between 0 and \(2^{n-1} \) and sends it to Bob in Boston. Bob calculates \(f(x) \) and replies with the result 0 or 1.

If \(f(x) \) is either constant or balanced, it is:
- equal to 1 for exactly half \(x \), and 0 for the other half.
- Alice's goal is to determine if \(f(x) \) is constant or balanced by corresponding with Bob as little as possible.

Classically, it will take \(\frac{2^n}{2} + 1 \) communications with qubits, Alice can achieve this in ONE query!

Alice has a n-qubit register to store her query in.
Bob has one qubit.
Bob will evaluate \(f(x) \) using quantum parallelism.

The quantum circuit looks as follows:

```
1) |H^m|
   --------
2) U_f
   |
   |
   |
   |
3) |H^m|
   --------
```

Input:
- \(|0\rangle \), \(|1\rangle \), \(|y\rangle \), \(|y \oplus f(x)\rangle \), \(|14_0\rangle \), \(|14_1\rangle \), \(|14_2\rangle \), \(|14_3\rangle \), \(|14_4\rangle \), \(|14_5\rangle \), \(|14_6\rangle \), \(|14_7\rangle \), \(|14_8\rangle \), \(|14_9\rangle \), \(|14_{10}\rangle \), \(|14_{11}\rangle \), \(|14_{12}\rangle \), \(|14_{13}\rangle \), \(|14_{14}\rangle \), \(|14_{15}\rangle \)
Input state $\ket{40} = \ket{0} \otimes \ket{1}$

$$
\ket{41} = \sum_{x} \frac{\ket{x}}{\sqrt{2^m}} \left[\frac{\ket{0} - \ket{1}}{\sqrt{2}} \right]
$$

query is a superposition of all states. 5 answer register is an evenly weighted superposition of 0 and 1.

$s(x)$ is affecting the amplitude of each term in the qubit register created by Alice.

4.3. For a single qubit

$$
H |x\rangle = \sum_{z=0,1} (-1)^x z \cdot \frac{|z\rangle}{\sqrt{2}}
$$

$$
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$

$|x\rangle = |0\rangle \Rightarrow H |0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) = \frac{(-1)^0 \cdot 0}{\sqrt{2}} |0\rangle + \frac{(-1)^1 \cdot 1}{\sqrt{2}} |1\rangle$

$|x\rangle = |1\rangle \Rightarrow H |1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{(-1)^0 \cdot 0}{\sqrt{2}} |0\rangle + \frac{(-1)^1 \cdot 1}{\sqrt{2}} |1\rangle$

So for the Hadamard transform, we have

$$
H^\otimes m \ket{z_1, \ldots, z_m} = \sum_{z_1, \ldots, z_m} (-1)^{z_1 \cdot z_1 + \cdots + z_m \cdot z_m} \frac{|z_1, \ldots, z_m\rangle}{\sqrt{2^m}}
$$
$$H^{\otimes n} |x\rangle = \sum_{z} \frac{(-1)^{x \cdot z}}{\sqrt{2^n}} |z\rangle$$

$x \cdot z$ = bit-wise inner product of x and z (modulo 2).

$$\Rightarrow |\psi_{2}\rangle = \sum_{z} \frac{(-1)^{x \cdot z} + f(x)}{\sqrt{2^n}} |z\rangle \left[\frac{[10^2 - 117]}{\sqrt{2}} \right]$$

Alice now derives the query register.

The amplitude for the state $|0\rangle^{\otimes m}$ is

$$\frac{2}{\sqrt{2^n}} \sum_{x} f(x)$$

If $f(x)$ = constant, amplitude is $(-1)^{0}$ or $(-1)^{1} < 2^n$ times.

But $|\psi_{2}\rangle$ has unit length \Rightarrow all other amplitudes must be 0.

\Rightarrow an observation will lead 02 for all qubits in the query register.

If f is balanced, we have an even number of terms \Rightarrow half will be positive, half negative, and their norms will exactly balance out. \Rightarrow there is a zero amplitude for the state $|0\rangle^{\otimes m}$. So, a measurement must leave a result other than 0 on at least one qubit in the query register.
Summarizing,

If the measure all as then the function is constant; otherwise the function is balanced.

Deutsch's problem is not unfortunately an important problem.

There are algorithms which are quantum versions of the Fourier transform – Solov'ev's algorithm for factoring and discrete algorithm. Also, the Grover or quantum search algorithm.