

Two Binary Algorithms for Calculating the
Jacobi Symbol and a Fast Systolic

Implementation in Hardware

George Purdy, Carla Purdy, and Kiran Vedantam
ECECS Department, University of Cincinnati, Cincinnati, OH, 45221-0030, USA

email: george.purdy@uc.edu,carla.purdy@uc.edu, vedantkk@email.uc.edu

Abstract--Efficiently computing the Jacobi symbol),(baJ for
integers a and b is an important step in a number of
cryptographic processes. We present two algorithms for
computing),(baJ which can easily be implemented in hardware
and which are efficient with respect to time and space. The first
algorithm we describe is slower but also easier to implement in
hardware than the second. The algorithms are systolic and thus
each can be implemented as an array of identical cells. We have
developed VHDL descriptions of these algorithms, and we
provide here example code for the process statements which are
central to the implementation of each algorithm. Each algorithm
has been tested on an Altera Cyclone EP1C6Q240 device and
simulated on an Altera Stratix-II EP2S15F484C3 device.

I. INTRODUCTION

A. Motivation
The Jacobi symbol),(baJ defined for integer a and odd

integer b has many applications in cryptography. Three that
we can mention are the Solovay-Strassen primality test, the
Goldwasser-Micali probabilistic public-key cryptosystem [1],
and the standard algorithm for determining the number of
points on an elliptic curve [2]. All of these would benefit
from a fast hardware implementation of),(baJ .

B. History
Algorithms for finding the Jacobi symbol),(baJ are

closely related to GCD (greatest common divisor) algorithms.
For example, the standard algorithm for calculating),(baJ
[1] is essentially Euclid's algorithm with some rules added for
sign changes. The algorithms for),(baJ discussed in this
paper are also modified GCD algorithms. We call them binary
algorithms because they are particularly well suited to binary
operations--e.g., they never divide by anything but 2. The
history of binary GCD algorithms begins with an algorithm by
Josef Stein published in 1961 (see [3] for a thorough
discussion). We published one [4]. One of the first algorithms
to be implemented systolically was the binary GCD algorithm
by Brent and Kung [5], who coined this use of the word
systolic. There are some more binary algorithms for the
Jacobi symbol that are more suitable for software

implementations than hardware. See [6] and the references
given there.

II. DEFINITION OF),(baJ

If p is an odd prime, then we usually refer to),(baJ as the
Legendre symbol, and it is defined as follows. We say that a
is a quadratic residue or QR modulo p if there is a c not
divisible by p such that pca mod2≡ , and we say that a is a
quadratic non-residue or NR if there is no such c . If ap | then
a is neither a QR nor an NR. We define

+
=

NR is if 1-
| if 0

QRa is if 1
),(

a
ap

 a
paJ

Note that),(),(paJppaJ =+ , and),'(),(),'(paJpaJpaaJ = .
Let kpppb21= , where the p 's are odd primes, not
necessarily distinct. Then we define the Jacobi symbol),(baJ
to be

),()......,(),(),(21 kpaJpaJpaJbaJ = .

Note that if 1),(>baGCD then ap j | for some j , and so
),(jpaJ = 0, and so 0),(=baJ . Note also that

)',(),()',(
and),'(),,(),'(

),(),(

baJbaJbbaJ
baJbaJbaaJ

baJbbaJ

=
=

=+

If 1),(=baGCD then),(baJ is 1 or -1, and),(baJ is only
defined when b is odd. All these facts about),(baJ can be
found in [1].

A. Algorithm 1(a) for J(a,b) and Its Analysis
Consider Algorithm 1(a) to compute),(baJ , given in

Figure 1.We claim that),(ba always converges to)1,1(which
then remains fixed inside the while (count < Limit) loop and
J stops changing. Thus the algorithm will work as long as
Limit is large enough. That)1,1(is a fixed point is obvious.

For example,

)1,1(),(if 14/)*3(==+= babaa .

Also, if (a,b) = (1, 1), the sign of),(baJ will not change. The
convergence comes from the fact that the conditions α2≤a

and β2≤b are preserved each time through the loops. This is
obvious except for the lines

 if((a+b)%4==0) { a=(a+b)/4;--alpha; }
 else {a = (a+3*b)/4;}

Here, if ,04)%(=+ ba then

12)22(4/1)22(4/14/)(−≤+≤+≤+= αααβαbaa , whereas

if ,04)%3(=+ ba then

αβα 2)2*32(4/1)3(4/1 ≤+≤+= baa ,

so that the condition is preserved in both cases. Now the
variable count counts the arithmetic operations, and, assuming
randomness, there is a 50% probability that βα + is
decreased by one each time that count is incremented. Since

βα + is initially 2 n , count will on the average reach 4 n
before the stable value)1,1(),(=ba is reached. A limit of 5 n
will therefore not be exceeded very often. (By Chebyshev's
inequality the probability that 5 n is not enough is less than
5/18 n = 0.278/ n . If n = 15, this is about 0.019. In
cryptographic applications, when n is around 1000, the
probability of 5 n not being enough would be less than
0.000278.) In practice however, things are much better. In an
exhaustive search that we carried out of all a and all odd b
less than 215 the value of count = 4 n was always enough.
(The biggest value of count was 59.) With several sample runs
using random 25-digit a 's and b 's, the results were even
better. The stable)1,1(was always reached with count very
close to 2 n .

B. Identities for J(a,b)
To justify Algorithm 1(a), we need some identities

involving),(baJ . In what follows, GCD (ba.,) = 1, b is odd,
and 1,0 >> ba . [1]

(1.1) 8/)1(2
)1(),2(−−= bbJ .This is needed for the step a = a/2.

It is not hard to derive from this the more useful formula:

(1.1a) 1),2(−=bJ if 8modb is 3 or 5 and +1 otherwise.

(1.2) 4/)1)(1()1(),(),(−−−= baabJbaJ . This is needed for the
swap(a,b) command. Again, it is not hard to derive the more
useful formula:

(1.2a) 1),(),(−=abJbaJ if a mod 4 and b mod 4 are both 3
and +1 otherwise.

(1.3) 1),2(),2(),4(+== bJbJbJ ,so the steps of the form
4/aa = don't change J .

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n.
int Limit = 5*n; int count = 0; int J = 1;
int alpha = n; int beta = n;
while(count < Limit)
{
 while(a even) //SHIFT
 {a=a/2; --alpha;
 if (b%8 ==3||b%8==5) J= -J;
 ++count;}

 if(alpha <=beta) //SWAP
 {swap(a,b); swap(alpha,beta);
 if (a%4==3 && b%4==3) J= -J;}

 if ((a+b)%4==0){a=(a+b)/4;--alpha;} //NEWA
 else a = (a+3*b)/4; ++count;
}
//J now has the value J(a,b)

Figure 1. Algorithm 1(a) for computing J(a,b).

C. Implementation Issues
In the actual implementation of Algorithm 1(a) it is

simpler to maintain a variable βαδ −= , and
eliminate βα and . Also, since βα and are approximately the
base two logarithms of a and b , δ is relatively small and can
be represented in unary notation. The resulting algorithm is
given in Figure 2.

III. THE ALGORITHM FOR SIGNED a AND b
We have also implemented a second algorithm, Algorithm

2, based on the Brent-Kung GCD algorithm, which allows
ba and to become negative. It has a rigorous time bound of

2 n . Algorithm 2 is given below in Figure 3.

A. Analysis of Algorithm 2
The instruction if (a<0&&b<0) J=-J; is difficult to

implement systolically because the signs of ba and require
complete carry resolution. Fortunately the operation JJ −=
commutes with all other instances of JJ −= , and so these can
be performed at the end, when the sign bits of a and b
become available. The conditions α2≤a and β2≤b are
maintained throughout the algorithm, and βα + is reduced by

one every time an arithmetic operation is performed, and so at
most 2 n operations are required. The computation ends when
a becomes 0 so that the divide-by-2 loop keeps dividing 0 by
2 until α becomes 0. Assuming that the GCD of the original
a and b is one, a can only become zero when),(ba
becomes (1,1), (1,-1), (-1,1), or (-1,-1). And by (1.6) below

1),(=baJ for these values. Hence the correct value of),(baJ
for the original),(ba is computed when GCD (ba,) = 1.

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n.
int Limit = 5*n;
int count = 0;
int J = 1;
int delta =0;
while(count<Limit)
{
 while(a even) //SHIFT

 {a=a/2; --delta;
 if(b%8 ==3||b%8==5) J=-J;
 ++count;}

 if(delta <=0) //SWAP
 {swap(a,b); delta = -delta;
 if(a%4==3 && b%4==3)J= -J;}

 if((a+b)%4==0){a=(a+b)/4;--delta;} //NEWA
 else a = (a+3*b)/4;

 ++count;
}
// J now has the value J(a,b).

Figure 2. Algorithm 1(b) for computing J(a,b).

B. Identities for Signed a and b
Algorithm 2 requires in place of (1.2) the signed version

(1.4) and it also needs (1.5) to evaluate),1(bJ − . These can be
found in [7].

(1.4) ,)1(),(),(4/)1)()(1)((4/)1)(1(−−+−−−= bsignasignbaabJbaJ where
sign(a) = 1 if 0>a and -1 if 0<a .

Again, it is easy to derive from this a more useful form:

(1.4a) 1=J ;
 if a mod 4 and b mod 4 are both 3 then JJ −= ;
 if 0<a and 0<b then JJ −= ;
 JabJbaJ =),(),(;

(1.5) 2/)1)((2/)1()1(),1(−+−−=− bsignbbJ . This is needed for the
end of the algorithm, and one can derive the more useful form:

(1.5a) 1=J ;
 if b mod 4 = 3 then JJ −= ;
 if 0<b then JJ −= ;
 JbJ =−),1(.

(1.6) It follows from (1.5a) that
1)1,1()1,1()1,1()1,1(=−−=−=−= JJJJ .

This is needed when the computation ends.

Strictly speaking,),(baJ is not normally defined when
},1,1{ −∈a but we can extend the definition using (1.7) below.

For any b , 1),1(),1(),1(== bJbJbJ , and (1.5a) implies that
1)1,1()1,1(=−−=− JJ . We can extend the definition of),(baJ

as: if 1=b ,then 1),()....,(),(),(21 == kpaJpaJpaJbaJ , the
empty product. Then (1.4a) and (1.5a) are consistent with
each other, if aaJ ∀=− 1)1,(. Thus we define

(1.7) 1)1,()1,(=−= aJaJ a ∀ .

Notice that this allows us to keep the property that
),(),(baJbbaJ =+ .

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n.
int J(long a, long b)
{
int alpha=n;
int beta=n;
int J=1;

while(true)
 {
 while(a even) //SHIFT

 {a=a/2;--alpha;
 if(b mod 8=3||b mod 8=5) J= -J;
 if (alpha = 0) return J;
 }

 if(alpha<=beta) //SWAP

 {swap(a,b); swap(alpha,beta);
 if(a mod 4=3 & b mod 4=3) J= -J;
 if(a<0 && b<0) J= -J;
 }

 if((a+b) mod 4=0) a=(a+b)/4;else a=(a-b)/4; //NEWA
 --alpha;
 }

// J now has the value J(a,b).

Figure 3. Algorithm 2 for computing J(a,b).

IV. HARDWARE IMPLEMENTATIONS

We have implemented both Algorithm 1(b) and Algorithm
2 in VHDL, as arrays of identical cells. We have compiled
and simulated the algorithms in the Altera Quartus II system
for the target device Cyclone EP1C6Q240C8 and downloaded
the resulting arrays onto the Altera UP3 prototyping board.
Cyclone FPGAs are a low-cost device family, with logic
elements (LEs) each consisting of a 4-input look-up table
(LUT), one D flip-flop, and additional control and routing
signals, arranged in larger logic array blocks (LABs), and with
additional RAM blocks. The EP1C6Q240C8 has a total of
5980 LEs. We have also compiled and simulated the
algorithms for a larger Altera device, the Stratix-II
EP2S15F484C3, which contains a total of 12,480 ALUTs (adaptive
look-up tables). Figure 4 shows a single cell for Algorithm 2.
In this systolic implementation, a and b are pumped through
the array, least significant bit first. After receiving the initial
3 least significant bits of each input (a, b, start, etc.), a cell
determines which algorithm action it needs to perform, and
thus which state the cell will be in while it processes the
remaining data bits. A 1 in the least significant bit of the start
data stream (s) indicates the position of the least significant bit
for each data item. For the signed Algorithm 2, some cells
will also need to know when the most significant bit arrives.

The main component of the VHDL code for each cell is a
process which is sensitive to a clock event. Each cell
functions as a finite state machine (FSM). When the start
signal is received, the cell decides what its job is (e.g., SHIFT
which divides a by 2, or SWAP a and b, or calculate a new a
value, NEWA) and whether or not to change the sign
of),(baJ . This defines the control within a given cell.
Thereafter it performs the correct computation on the
remaining bits of a and b. The VHDL behavioral code for
determining the cell's function is given in Figure 5.

Figure 4. One cell in the systolic implementation of Algorithm 2.
The values inside the boxes indicate state bits which are set once the
first 3 bits of the numbers a and b are received. The remaining bits
of a and b go through the same transformation in the cell.

The results for our implementations of Algorithm 1(b) and
Algorithm 2 in Altera Cyclone EP1C6Q240 devices, the
devices provided on the Altera UP-3 education boards, are
given in Table I. Recall that for Algorithm 1(b) to process n-
bit numbers, an array of 5n systolic cells is required. For
Algorithm 2 to process n-bit numbers, an array of 2n systolic
cells is required.

For cryptographic applications, we will often need to deal
with large integers. Thus we also simulated Algorithm 2 on
the largest available Altera device, the Stratix-II EP2S15F484C3
device. The results for this simulation are given in Table II.

For each algorithm, we give the number of LEs (or
ALUTs) needed to implement one cell and also the number
needed for the largest array of cells that will fit in one device.
Note that the clock frequency decreases significantly as we
move from one systolic cell to an array of cells. For our
implementations and simulations, we relied on the Altera
Quartus II automated design tools. It may be that custom
design techniques would allow us to achieve higher clock
rates.

V. CONCLUSIONS AND FUTURE WORK
We have provided unsigned and signed systolic algorithms

for computing the Jacobi symbol),(baJ of integers ba, .
Each algorithm is implemented in an array of identical cells,
and each cell's state is set by 1-3 lsb's of the inputs. The
unsigned version, Algorithm 1(b), requires 5 n cells, and
thus),(baJ is completed in time k*5 n , where k is the
processing time for one cell. The signed version, Algorithm
2, requires only 2 n cells, but there is also a delay of at most
n clock cycles for the final value of),(baJ to be set, due to
the need to determine the signs of a and b . We have
implemented our algorithms in Altera FPGAs. We are
currently working on custom layouts for the cells, to obtain
higher clock rates and thus greater processing efficiency.

REFERENCES
1. D.R. Stinson, Cryptography Theory and Practice, third edition, CRC
Press, 2006.
2. N. Koblitz, A Course In Number Theory and Cryptography, Springer-
Verlag, 1987.
3. D.E. Knuth, Art of Computer Programming, Vol 2, third edition, 1997.
4. G. Purdy, A carry-free algorithm for finding the greatest common divisor
of two integers, Computers and Math. with Applications, 9 (2), pp. 311-316,
1983.
5. R.P. Brent and H.T. Kung, Systolic VLSI arrays for linear-time GCD
computation, Proc. VLSI '83, pp. 145-154, 1983.
6. J. Shallit and J. Sorenson, A binary algorithm for the Jacobi symbol, ACM
SIGSAM Bulletin 27 (1), 1993.
7. H. Hasse, Number Theory, Springer Verlag, 1970, p.86.

process (clk,reset)
begin
if (reset = '1') then
 state <= INIT;
elsif (clk'event and clk = '1') then
 case state is
 when INIT=>
 if (stopin = '1') then
 state <= STOP;
 elsif ((start(2) and alpha(2)) = '1')
 state <= STOP;
 elsif (start(2) = '1') then
 if (a(2) = '0') then
 state <= SHIFT;
 elsif (sdelta(2) = '1') then
 state <= SWAP;
 else
 state <= NEWA;
 end if;
 else
 state <= INIT;
 end if;
 when SHIFT=>
 if (start(2) = '1') then
 state <= INIT;
 else
 state <= SHIFT;
 end if;
 when SWAP=>
 if (start(2) = '1') then
 state <= INIT;
 else
 state <= SWAP;
 end if;
 when NEWA=>
 if (start(2) = '1') then
 state <= INIT;
 else
 state <= NEWA;
 end if;
 when STOP=>
 state <= STOP;
 when others=>
 state <= INIT;
 end case;
 end if;
end process;

Figure 5. VHDL code for the process to put each cell in the correct
computational state for Algorithm 2.

TABLE I. IMPLEMENTING ALGORITHMS 1(b) & 2 IN AN
ALTERA CYCLONE EP1C6Q240 DEVICE (5980 LES).

Alg. LEs %

Dev.
Used

n
(Bits
per

Dev.)

Devices
per

1000
Bits

Clk
Freq.
(MHz)

1(b):
1 Cell

35 <1% -- -- 312.08

1(b):
Array

5862 98%
(210 Cells)

42 ~24 90.00

2:
1 Cell

46 <1% -- -- 275.03

2:
Array

5861 98%
(140 Cells)

70 ~14 88.3

TABLE II. IMPLEMENTING ALGORITHM 2 IN AN
ALTERA STRATIX-II EP2S15F484C3 DEVICE (12,480 ALUTS).

 ALUTs %

Dev. Used
n

(Bits
per

Dev.)

Devices
Per

1000
 Bits

Clk
Freq.
(MHz)

1 Cell 44 <1% -- -- 487.33
Array 12,121 97%

(340 Cells)
170 ~6 127.81

