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Abstract--Efficiently computing the Jacobi symbol ),( baJ  for 
integers a  and b  is an important step in a number of 
cryptographic processes.  We present two algorithms for 
computing ),( baJ  which can easily be implemented in hardware 
and which are efficient with respect to time and space.  The first 
algorithm we describe is slower but also easier to implement in 
hardware than the second.  The algorithms are systolic and thus 
each can be implemented as an array of identical cells.  We have 
developed VHDL descriptions of these algorithms, and we 
provide here example code for the process statements which are 
central to the implementation of each algorithm.  Each algorithm 
has been tested on an Altera Cyclone EP1C6Q240 device and 
simulated on an Altera Stratix-II EP2S15F484C3 device.     

I.  INTRODUCTION 

A.  Motivation 
The Jacobi symbol ),( baJ  defined for integer a  and odd 

integer b  has many applications in cryptography. Three that 
we can mention are the Solovay-Strassen primality test, the 
Goldwasser-Micali probabilistic public-key cryptosystem [1], 
and the standard algorithm for determining the number of 
points on an elliptic curve [2].  All of these would benefit 
from a fast hardware implementation of ),( baJ . 

B.  History 
Algorithms for finding the Jacobi symbol ),( baJ are 

closely related to GCD (greatest common divisor) algorithms. 
For example, the standard algorithm for calculating ),( baJ  
[1] is essentially Euclid's algorithm with some rules added for 
sign changes. The algorithms for ),( baJ discussed in this 
paper are also modified GCD algorithms. We call them binary 
algorithms because they are particularly well suited to binary 
operations--e.g., they never divide by anything but 2. The 
history of binary GCD algorithms begins with an algorithm by 
Josef Stein published in 1961 (see [3] for a thorough 
discussion). We published one [4].  One of the first algorithms 
to be implemented systolically was the binary GCD algorithm 
by Brent and Kung [5], who coined this use of the word 
systolic.  There are some more binary algorithms for the 
Jacobi symbol that are more suitable for software 

implementations than hardware.  See [6] and the references 
given there. 

II. DEFINITION OF ),( baJ  

If p is an odd prime, then we usually refer to ),( baJ as the 
Legendre symbol, and it is defined as follows. We say that a  
is a quadratic residue or QR modulo p  if there is a c  not 
divisible by p  such that pca mod2≡ , and we say that a is a 
quadratic non-residue or NR if there is no such c . If ap |  then 
a  is neither a QR nor an NR. We define 
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Let kpppb ......21= , where the p 's are odd primes, not 
necessarily distinct. Then we define the Jacobi symbol ),( baJ  
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If 1),( =baGCD then ),( baJ is 1 or -1, and ),( baJ  is only 
defined when b  is odd. All these facts about ),( baJ  can be 
found in [1]. 

A.  Algorithm 1(a) for J(a,b) and Its Analysis 
Consider Algorithm 1(a) to compute ),( baJ , given in 

Figure 1.We claim that ),( ba  always converges to )1,1(  which 
then remains fixed inside the while (count < Limit) loop and 
J   stops changing. Thus the algorithm will work as long as 
Limit is large enough. That )1,1( is a fixed point is obvious.  

 



 

For example,  

)1,1(),( if 14/)*3( ==+= babaa . 

Also, if (a,b) = (1, 1), the sign of ),( baJ will not change. The 
convergence comes from the fact that the conditions α2≤a  

and β2≤b are preserved each time through the loops. This is 
obvious except for the lines 

                if( (a+b)%4==0 )   { a=(a+b)/4;--alpha; } 
               else {a = (a+3*b)/4;} 
 
Here, if ,04)%( =+ ba then  

12)22(4/1)22(4/14/)( −≤+≤+≤+= αααβαbaa , whereas  

if ,04)%3( =+ ba  then  

αβα 2)2*32(4/1)3(4/1 ≤+≤+= baa ,  

so that the condition is preserved in both cases.  Now the 
variable count counts the arithmetic operations, and, assuming 
randomness, there is a 50% probability that βα +  is 
decreased by one each time that count is incremented. Since 

βα +  is initially 2 n , count will on the average reach 4 n  
before the stable value )1,1(),( =ba  is reached. A limit of 5 n  
will therefore not be exceeded very often. (By Chebyshev's 
inequality the probability that 5 n  is not enough is less than 
5/18 n  = 0.278/ n . If n  = 15, this is about 0.019. In 
cryptographic applications, when n  is around 1000, the 
probability of 5 n  not being enough would be less than 
0.000278.) In practice however, things are much better. In an 
exhaustive search that we carried out of all a and all odd b  
less than 215  the value of count = 4 n  was always enough. 
(The biggest value of count was 59.) With several sample runs 
using random 25-digit a 's and b 's, the results were even 
better. The stable )1,1(  was always reached with count very 
close to 2 n .  

B.  Identities for J(a,b)  
To justify Algorithm 1(a), we need some identities 

involving ),( baJ . In what follows, GCD ( ba., ) = 1, b  is odd, 
and 1,0 >> ba . [1] 

(1.1) 8/)1( 2
)1(),2( −−= bbJ .This is needed for the step a = a/2.  

It is not hard to derive from this the more useful formula: 

(1.1a) 1),2( −=bJ  if 8modb is 3 or 5 and +1 otherwise. 

(1.2) 4/)1)(1()1( ),(),( −−−= baabJbaJ . This is needed for the 
swap(a,b) command. Again, it is not hard to derive the more 
useful formula: 

(1.2a) 1),(),( −=abJbaJ  if a  mod 4 and b  mod 4 are both 3 
and +1 otherwise. 

(1.3) 1),2(),2(),4( +== bJbJbJ ,so the steps of the form 
4/aa =  don't change J . 

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n. 
int Limit = 5*n; int count = 0; int J = 1;  
int alpha = n; int beta = n; 
while(count < Limit)  
{ 
   while(a even)    //SHIFT 
      {a=a/2; --alpha;  
        if (b%8 ==3||b%8==5) J= -J;   
        ++count;} 
    
   if(alpha <=beta)   //SWAP 
      {swap(a,b); swap(alpha,beta);  
      if (a%4==3 && b%4==3) J= -J;} 
    
   if ((a+b)%4==0){a=(a+b)/4;--alpha;} //NEWA 
   else a = (a+3*b)/4; ++count; 
} 
//J now has the value J(a,b) 

Figure 1.  Algorithm 1(a) for computing J(a,b). 

C.  Implementation Issues 
In the actual implementation of Algorithm 1(a) it is 

simpler to maintain a variable βαδ −= , and 
eliminate βα   and  . Also, since βα   and  are approximately the 
base two logarithms of a and b , δ  is relatively small and can 
be represented in unary notation. The resulting algorithm is 
given in Figure 2. 

III. THE ALGORITHM FOR SIGNED a AND b 
We have also implemented a second algorithm, Algorithm 

2, based on the Brent-Kung GCD algorithm, which allows 
ba  and  to become negative. It has a rigorous time bound of 

2 n .  Algorithm 2 is given below in Figure 3. 

A.  Analysis of Algorithm 2 
The instruction if (a<0&&b<0) J=-J; is difficult to 

implement systolically because the signs of ba  and require 
complete carry resolution. Fortunately the operation JJ −=  
commutes with all other instances of JJ −= , and so these can 
be performed at the end, when the sign bits of a  and b  
become available.  The conditions α2≤a and β2≤b  are 
maintained throughout the algorithm, and βα + is reduced by 



 

one every time an arithmetic operation is performed, and so at 
most 2 n  operations are required. The computation ends when 
a  becomes 0 so that the divide-by-2 loop keeps dividing 0 by 
2 until α  becomes 0.  Assuming that the GCD of the original 
a  and b  is one, a  can only become zero when ),( ba  
becomes (1,1), (1,-1), (-1,1), or (-1,-1).  And by (1.6) below 

1),( =baJ  for these values.  Hence the correct value of ),( baJ  
for the original ),( ba is computed when GCD ( ba, ) = 1.   

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n. 
int Limit = 5*n;  
int count = 0;  
int J = 1;  
int delta =0; 
while(count<Limit) 
{ 
   while(a even)    //SHIFT 
 
      {a=a/2; --delta;  
        if(b%8 ==3||b%8==5) J=-J;  
        ++count;} 

   if(delta <=0)    //SWAP 
      {swap(a,b); delta = -delta;  
        if(a%4==3 && b%4==3)J= -J;} 

   if((a+b)%4==0){a=(a+b)/4;--delta;}  //NEWA 
   else a = (a+3*b)/4;  

   ++count; 
} 
// J now has the value J(a,b). 

Figure 2.  Algorithm 1(b) for computing J(a,b). 

B.  Identities for Signed a and b 
Algorithm 2 requires in place of (1.2) the signed version 

(1.4) and it also needs (1.5) to evaluate ),1( bJ − . These can be 
found in [7].   

(1.4) ,)1(),(),( 4/)1)()(1)((4/)1)(1( −−+−−−= bsignasignbaabJbaJ where 
sign( a ) = 1 if 0>a  and -1 if 0<a . 

Again, it is easy to derive from this a more useful form: 

(1.4a) 1=J ;  
               if a  mod 4 and b  mod 4 are both 3 then JJ −= ;    
               if 0<a and 0<b then JJ −= ;  
 JabJbaJ =),(),( ; 

(1.5)  2/)1)((2/)1()1(),1( −+−−=− bsignbbJ . This is needed for the 
end of the algorithm, and one can derive the more useful form: 

 
 

(1.5a)      1=J ;  
                if b  mod 4 = 3 then JJ −= ;  
                if 0<b then JJ −= ;  
                JbJ =− ),1( . 

(1.6) It follows from (1.5a) that 
1)1,1()1,1()1,1()1,1( =−−=−=−= JJJJ . 

This is needed when the computation ends. 

Strictly speaking, ),( baJ  is not normally defined when 
},1,1{ −∈a but we can extend the definition using (1.7) below.   

For any b , 1),1(),1(),1( == bJbJbJ , and (1.5a) implies that 
1)1,1()1,1( =−−=− JJ .  We can extend the definition of ),( baJ  

as: if 1=b ,then 1),()....,(),(),( 21 == kpaJpaJpaJbaJ , the 
empty product.  Then (1.4a) and (1.5a) are consistent with 
each other, if aaJ ∀=−   1)1,(  .  Thus we define 

(1.7) 1)1,()1,( =−= aJaJ  a  ∀ .  

Notice that this allows us to keep the property that 
),(),( baJbbaJ =+ .  

// b is odd, GCD(a,b) = 1, a < 2n and b < 2n. 
int J(long a, long b) 
{ 
int alpha=n; 
int beta=n;  
int J=1; 

while(true) 
   { 
      while(a even)              //SHIFT
  
         {a=a/2;--alpha;  
           if(b mod 8=3||b mod 8=5) J= -J; 
           if (alpha = 0) return J;  
           } 

       if(alpha<=beta)              //SWAP
  
       {swap(a,b); swap(alpha,beta); 
         if(a mod 4=3 & b mod 4=3) J= -J; 
         if(a<0 && b<0) J= -J; 
       } 

      if((a+b) mod 4=0) a=(a+b)/4;else a=(a-b)/4;  //NEWA 
      --alpha; 
   } 

// J now has the value J(a,b). 

Figure 3. Algorithm 2 for computing J(a,b). 
 
 



 

IV. HARDWARE IMPLEMENTATIONS 

We have implemented both Algorithm 1(b) and Algorithm 
2 in VHDL, as arrays of identical cells.  We have compiled 
and simulated the algorithms in the Altera Quartus II system 
for the target device Cyclone EP1C6Q240C8 and downloaded 
the resulting arrays onto the Altera UP3 prototyping board.  
Cyclone FPGAs are a low-cost device family, with logic 
elements (LEs) each consisting of a 4-input look-up table 
(LUT), one D flip-flop, and additional control and routing 
signals, arranged in larger logic array blocks (LABs), and with 
additional RAM blocks. The EP1C6Q240C8 has a total of 
5980 LEs.  We have also compiled and simulated the 
algorithms for a larger Altera device, the Stratix-II 
EP2S15F484C3, which contains a total of 12,480 ALUTs (adaptive 
look-up tables).  Figure 4 shows a single cell for Algorithm 2.  
In this systolic implementation, a  and b  are pumped through 
the array, least significant bit first.  After receiving the initial 
3 least significant bits of each input (a, b, start, etc.), a cell 
determines which algorithm action it needs to perform, and 
thus which state the cell will be in while it processes the 
remaining data bits.  A 1 in the least significant bit of the start 
data stream (s) indicates the position of the least significant bit 
for each data item.  For the signed Algorithm 2, some cells 
will also need to know when the most significant bit arrives.    

The main component of the VHDL code for each cell is a 
process which is sensitive to a clock event.  Each cell 
functions as a finite state machine (FSM).  When the start 
signal is received, the cell decides what its job is (e.g., SHIFT 
which divides a by 2, or SWAP a and b, or calculate a new a 
value, NEWA) and whether or not to change the sign 
of ),( baJ .  This defines the control within a given cell.  
Thereafter it performs the correct computation on the 
remaining bits of a and b.  The VHDL behavioral code for 
determining the cell's function is given in Figure 5.   

Figure 4.  One cell in the systolic implementation of Algorithm 2.  
The values inside the boxes indicate state bits which are set once the 
first 3 bits of the numbers a and b are received.  The remaining bits 
of a and b go through the same transformation in the cell. 

The results for our implementations of Algorithm 1(b) and 
Algorithm 2 in Altera Cyclone EP1C6Q240 devices, the 
devices provided on the Altera UP-3 education boards, are 
given in Table I.  Recall that for Algorithm 1(b) to process n-
bit numbers, an array of 5n systolic cells is required.  For 
Algorithm 2 to process n-bit numbers, an array of 2n systolic 
cells is required.   

For cryptographic applications, we will often need to deal 
with large integers.   Thus we also simulated Algorithm 2 on 
the largest available Altera device, the Stratix-II EP2S15F484C3 
device.  The results for this simulation are given in Table II.   

For each algorithm, we give the number of LEs (or 
ALUTs) needed to implement one cell and also the number 
needed for the largest array of cells that will fit in one device.  
Note that the clock frequency decreases significantly as we 
move from one systolic cell to an array of cells.  For our 
implementations and simulations, we relied on the Altera 
Quartus II automated design tools.  It may be that custom 
design techniques would allow us to achieve higher clock 
rates.       

V.  CONCLUSIONS AND FUTURE WORK 
We have provided unsigned and signed systolic algorithms 

for computing the Jacobi symbol ),( baJ  of integers ba, .  
Each algorithm is implemented in an array of identical cells, 
and each cell's state is set by 1-3 lsb's of the inputs.  The 
unsigned version, Algorithm 1(b), requires 5 n  cells, and 
thus ),( baJ is completed in time k*5 n , where k is the 
processing time for one cell.  The signed version, Algorithm 
2, requires only 2 n  cells, but there is also a delay of at most 
n  clock cycles for the final value of ),( baJ to be set, due to 
the need to determine the signs of  a  and b .  We have 
implemented our algorithms in Altera FPGAs.  We are 
currently working on custom layouts for the cells, to obtain 
higher clock rates and thus greater processing efficiency. 
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process (clk,reset) 
begin 
if ( reset = '1' ) then 
        state <= INIT; 
elsif (clk'event and clk = '1' ) then    
        case state is  
                when INIT=> 
                        if ( stopin = '1' ) then  
                                state <= STOP;  
                        elsif ((start(2) and alpha(2)) = '1' )  
                                state <= STOP;   
                        elsif ( start(2) = '1' ) then 
                                if (a(2) = '0' ) then 
                                        state <= SHIFT; 
                                elsif (sdelta(2) = '1') then 
                                        state <= SWAP; 
                                else 
                                        state <= NEWA; 
                                end if; 
                        else  
                                state <= INIT; 
                        end if; 
                when SHIFT=> 
                        if (start(2) = '1' ) then  
                                state <= INIT; 
                        else  
                                state <= SHIFT; 
                        end if; 
                when SWAP=> 
                         if (start(2) = '1' ) then 
                                state <= INIT;  
                        else 
                                state <= SWAP; 
                        end if; 
                when NEWA=> 
                        if (start(2) = '1' ) then 
                                state <= INIT; 
                        else 
                                state <= NEWA; 
                        end if; 
                when STOP=> 
                        state <= STOP; 
                when others=> 
                        state <= INIT; 
                end case; 
        end if; 
end process; 

Figure 5.  VHDL code for the process to put each cell in the correct 
computational state for Algorithm 2. 

 
 
 
 

TABLE  I. IMPLEMENTING ALGORITHMS 1(b) & 2 IN AN 
ALTERA CYCLONE EP1C6Q240 DEVICE  (5980 LES).   

 
Alg. LEs %  

Dev.  
Used 

n 
(Bits  
per  

Dev.) 

Devices 
per 

1000  
Bits 

Clk  
Freq. 
(MHz) 

1(b):  
1 Cell 

35 <1% -- -- 312.08 

1(b): 
Array 

5862 98% 
(210 Cells) 

42 ~24 90.00  
 

2: 
1 Cell 

46 <1% -- -- 275.03 

2: 
Array 

5861 98% 
(140 Cells) 

70 ~14 88.3  

 

TABLE  II. IMPLEMENTING ALGORITHM  2 IN AN  
ALTERA STRATIX-II EP2S15F484C3 DEVICE (12,480 ALUTS).   

 
 ALUTs %  

Dev. Used 
n 

(Bits 
per 

Dev.) 

Devices 
Per 

1000 
 Bits 

Clk 
Freq. 
(MHz) 

1 Cell 44 <1% -- -- 487.33 
Array 12,121 97% 

(340 Cells) 
170 ~6 127.81 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


