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ABSTRACT

We describe how hardware description languages (HDL’s)
can be used to support the design and simulation of sys-
tems incorporating components interacting in multiple en-
ergy domains. This methodology encourages emphasis on
higher-level system design while providing performance tar-
gets for lower-level component design. It can also be made
independent of the actual simulation engine(special-purpose
mixed domain simulators or separate simulators for differ-
ent energy domains). This approach supports modular, hi-
erarchical design and allows strategies such as rapid proto-
typing and component reuse to be applied to multidomain
systems, thus speeding the development of such systems for
commercial use.

1. INTRODUCTION

Today’s state-of-the-art digital design systems typically
support many different levels of design activity. At the high-
est levels in the design process, structural system descrip-
tions and high-level language component descriptions pro-
mote system-level thinking, while at lower levels sophisti-
cated simulation tools provide detailed descriptions of phys-
ical behavior. Fabrication processes are well-characterized,
and parameters from these processes are routinely collected
for use in low-level simulations. These differing levels of de-
sign and simulation activity are tied together by sophisti-
cated analysis, synthesis and verification tools. Thus digital
systems can be rapidly prototyped and modified, and large-
scale commercialization of these systems has become a real-
ity. In contrast, the current state of the art for production of
multi-energy domain systems is much more primitive. Here
we will use the term MEMS to mean any multi-energy do-
main system, including but not limited to electromechanical
systems. MEMS fabrication processes are extremely varied
and, in consequence, much less standardized [7]. Robust
simulation tools which can handle interacting energy do-
mains efficiently, such as MEMCAD, IntelliCAD, and the
CFDRC tools, are just beginning to become available[10],
as are some tools for use in university research[9]. MEMS
component libraries do exist, but they tend to consist of in-
dividual components which must be laboriously integrated
into working systems[6][11]. And techniques for macro-level
MEMS design are almost nonexistent. Recently, however,
researchers have begun to succeed in extending digital de-
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sign methodologies to the analog domain, with ”mixed sig-
nal” design and simulation tools being developed. One
such tool is VHDL-AMS (VLSI Hardware Description Lan-
guage with Analog and Mixed Signal extensions)[1]. Here
we show, using some simple examples, how this language
can in fact be used to support modular design, component
reuse, and hierarchical development, not only of mixed sig-
nal systems but also of multi-domain, or MEMS, systems.
By incorporating VHDL-AMS into emerging MEMS design
systems, it should eventually be possible to develop design
methodologies similar to current digital design methodolo-
gies and hence to more easily achieve commercialization for
these much more complex systems. Thus the many bene-
fits which MEMS systems promise[8] will become realizable.
Our remarks also apply, of course, to similar HDL’s such as
Verilog and its extensions.

2. THE VHDL-AMS LANGUAGE

VHDL-AMS is a structured programming language with
origins in the Ada language. VHDL-AMS is an extension
to the analog domain of VHDL, which was originally de-
signed for simulation of digital circuits and systems and
which has also been used extensively in digital circuit syn-
thesis. As in VHDL, a description consists of an entity
specifying inputs and outputs, as well as associated ”ar-
chitectures” describing, possibly in different styles and at
different levels of abstraction, how the inputs will be trans-
formed into the outputs. VHDL-AMS is, in fact, not limited
to the electrical domain. It has the ability to handle any
algebraic or ordinary differential equation or any system
of such equations. VHDL-AMS does not yet incorporate
either finite element methods or distributed parameter cal-
culations. However, for a given problem, it is possible to de-
fine a set of elements and their associated equations offline
and, using piecewise linear approximations, to deal not only
with lumped parameters but also with distributed parame-
ters. In addition, because it must deal with both digital and
analog ”events”, VHDL-AMS can handle both discrete and
continuous phenomena. Currently, complex VHDL-AMS
SPICE type models for transistors and other electrical com-
ponents are becoming available[5]. But VHDL-AMS can
also be used at much higher levels of abstraction to specify
connections between system components. A VHDL-AMS
”compiler” can output intermediate code for any simulator
or simulators, as long as certain rules are followed. For ex-
ample, the compilation step of the SEAMS simulator used
for this work[12] has options to output C++, VHDL or code
for parallel execution.



3. SOME EXAMPLES

As a simple example of how VHDL-AMS easily handles mul-
tiple energy domains, consider a thermistor, used to trans-
late between temperature and electrical resistance. The
Steinhart and Hart equation,

T = (a+ b(InR) + c¢(InR)?) (1)

gives T as a function of resistance, where a,b,c depend on
physical properties of the thermistor. A VHDL-AMS pro-
gram implementing this calculation is given in Figure 1.
Values for a,b,c are taken from [13]. In this example, the
behavior of a component has been specified. This compo-
nent description can be used at the system level , along with
other components, to design a multi-component part. It can
also be used by the component designer as a specification
for the actual component behavior. Thus this description
provides a separation between the task of the system de-
signer, i.e., fitting it into a complex system, and the task of
the component designer, i.e., making the component with
this functionality. Here we assume no other relevant in-
teractions with other components or with the environment.

package electricalsystem is
nature electrical is real across real through;
function sin (x: real) return real;
function exp (x: real) return real;
function tanh (x: real) return real;
function sqrt (x: real) return real;
function pow (x,y: real) return real;
function log (x:real) return real;
end package electricalsystem;
use work.electricalsystem.all;

entity thermister is
end entity thermister;

architecture behavior of thermister is
quantity t: real;
constant a: real :=1.4733e-3;
constant b: real :=2.372e-4;
constant c: real :=1.074-6;
quantity denom: real;
quantity logr: real;
quantity r:real ;
begin
denom == a + b*logr + c*(logr*logr*logr);
t == 1.0/denom;
logr == log((real(time’pos(NOW))*1.0e-7)+10.0);
end behavior;

Figure 1. Simple Thermistor Model

This model does not take into consideration any connec-
tions to the outside world. This is noted in the entity hav-
ing an empty port description. This allows a designer to
simplify a model to be able to make rapid changes in the
model before more complexity is added. A thermistor may
be given an interface to the outside world by defining its

inputs and outputs in the entity with the port, as shown in
Figure 2.

--entity describes interface to "outside world"
--here input is resistance, output temperature

entity thermistor is
port(rin: in real; temp: out real);
end entity thermistor;

--architecture displays desired behavior; for
--given input resistance, a particular output
--temperature must be obtained

architecture simple of thermistor is

quantity r: real;

quantity t: real;

constant a: real := 1.4733E-3;

constant b: real := 2.372E-4;

constant c: real := 1.074E-7;
begin

bl: break t => 0.0, r => 0.0;
inputtestbench: process
--process to read in resistances from input
——file
file indata: text open read_mode is
"thermist.in";
variable linebuf: line;
variable resist:real;
variable okay: boolean;
begin
while (not (endfile(indata))) loop
readline(indata,linebuf) ;
read (linebuf,resist,okay);
rin <= resist;
WAIT FOR 1 ns;
end loop;
end process;
initialize: process(rin)
—-code to initialize r to rin from file.

end process;
calctemp: process
--Place specific model equations here

end process;
end architecture simple;

Figure 2. Thermistor Model with Interface

A more complex example would involve interaction between
subcomponents encapsulated in one VHDL-AMS descrip-
tion. As an example of such a system, consider the can-
tilever beam-capacitor system shown in Figure 3. A behav-
ioral approach to designing such a system was presented
in[3]. In [4] several tools for designing and modeling this
system, where the beam was treated as a simple spring,
were discussed. A simple model for the beam may be ex-
pressed as in Figure 4 below.
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Figure 3. Micro-beam/Capacitor system[3]

entity cant_beam is
end entity cant_beam;

architecture simple of cant_beam is
quantity x: real;

quantity v: real;

quantity a: real;

quantity F: real;

constant Force: real := 1.0e-5;
constant L: real := 80.0e-6;

constant W: real := 20.0e-6;
constant H: real := 2.0e-6;
constant P: real := 2.26E3;

constant B: real := 3.92e-6;
constant M: real := L*WxH*P;
constant Y: real := 170.0e9;
constant IZ: real:= (WxH*HxH)/12.0;

constant Rigidity: real := Y*IZ;
constant k: real := (3.0*Rigidity)/(L*L*L);
begin

bl: break v =>0.0, a=>0.0, x=>0.0;

F == Force;

spring: F == M¥a + B*v + k*x;

vel: v == x’dot;

accel: a == v’dot;

end architecture simple;

Figure 4. Simple Cantilever Beam Model

Once again this is a simple model of the cantilever beam
for a given constant force applied. We can calculate the
deflection according to the force. Using this model, a more
complex model incorporating the electrical domain (the at-
tractive force due to capacitance) is given.

It would be convenient if one could have terminal types
which make sense for all the energy domains besides the
electrical which VHDL-AMS supplies for us. Recently, work
has been done on creating packages which may be incorpo-

rated into the models which allow more intuitive interfaces
for each energy domain. Figure 5[14] is an example of a
capacitve driven cantilever beam using such a set of pack-
ages. Note that the port has terminals of type electrical and
translational. Translational is a type of mechanical behav-
ior. The beam deflection is controlled by the forces due to
capacitance when a voltage is applied. Thus, a higher level
of abstraction may be attained by using design strategies of
this nature.

USE work.mechanical_systems.all ;
USE work.electrical_systems.all ;

ENTITY sensor IS

GENERIC (

M : MASS := 0.16e-9 ;

B : DAMPING := 4.0e-6 ;

K : STIFFNESS := 2.6455 ;

A : real := 2.0e-6*%110.0e-6 ;

d0 : real := 1.5e-6 );

PORT (TERMINAL proof_mass,ref:translational ;
TERMINAL top_el,mid_el,bot_el:electrical);
END ENTITY sensor ;

ARCHITECTURE behavioral OF sensor IS
QUANTITY pos ACROSS force THROUGH proof_mass TO ref;
QUANTITY Vtm ACROSS Itm THROUGH top_el TO mid_el;
QUANTITY Vbm ACROSS Ibm THROUGH bot_el TO mid_el;

QUANTITY vel : VELOCITY ;
QUANTITY Dtm,Dbm : DISPLACEMENT ;
QUANTITY Qtm,Qbm : CHARGE ;
QUANTITY Ctm,Cbm : CAPACITANCE ;

CONSTANT epsO : real := 8.85e-12 ;

BEGIN
-- differential equations for MSD
vel == pos’dot ;
force == - K¥(pos) - B*(vel) - M*(vel’dot);
Dtm == dO + pos ;
Dbm == dO - pos ;

-- equations for capacitive transduction (pickoff)
Ctm == AxepsO/Dtm ;

Cbm == AxepsO/Dbm ;

Qtm == Ctm*Vtm ;

Qbm == Cbm*Vbm ;

Itm == Qtm’dot ;

Ibm == Qbm’dot ;

END ARCHITECTURE behavioral ;

Figure 5. Model of Beam-Capacitor System[14]

The model for Figure 6 brings many of the above models
together. the input voltage produces a force on the beam,
causing a deflection; the deflection causes a change in ca-
pacitance, thereby changing the force on the beam. Thus
there is a feedback loop between the electrical component,
the capacitor, and the mechanical component, the beam.
As we see in Figure 6, this interaction is easily modeled
in VHDL-AMS. Note that the force calculation for this
cantilever beam system can be done in several ways—as a
”spring-mass” system using the previous beam models, or
with a finite element method. To this point we have in-
cluded only the spring solutions. We will go into more detail



in the next section regarding finite element analysis (FEA)
models.

entity cantbeamactuator is
port(vin: in real;
deflection, force: out real);
end entity cantbeamactuator;

architecture choice of cantbeamactuator is
quantity x: real;

....(auxiliary variables)....

quantity F: real;

quantity volt: real;
-—-physical constants (length, width, etc.)
constant B:real :=0.4*sqrt(M*K);

constant e0: real := 8.85E-12;
begin

—-—initialization

inputtestbench: process

file indata: text open read_mode is
"beaminfo.in";

variable linebuf: line;

variable vtemp: real;

begin

while (not (endfile(indata))) loop

readline(indata, linebuf);

read (linebuf,vtemp) ;
vin <= vtemp;
end loop;

end process;
initialize: process(vin)
begin
volt := vin;
end process;

--force calculation (from capacitor)

calc_force: process
variable area, perm, attractforce: real;
begin
area := l*w;
perm := e0;
attractforce :=
(area*perm*volt*volt)/(2.0%x*x) ;
f := attractforce;
end process;

--input force and output x value

......... see Figure 4,5,7 and 8 for options
deflection <= x;

force <= f;
end architecture choice;

Figure 6.System with choice for beam model

4. VHDL-AMS AND FINITE ELEMENT
ANALYSIS

Since VHDL-AMS is an ordinary differential equation
solver, it is ideal for solving systems of equations. We

demonstrate its effectiveness and ease by modeling the can-
tilever beam (with the assumption that the beam is uni-
form). In this case, we only deal with a mechanical beam
in which a constant load is applied. Therefore, we are ex-
amining the static behavior of the beam. Finite Element
Analysis (FEA) on the beam can be done by breaking the
beam into multiple elements using the equation:

F =KX 2)

where F is the vector of forces applied to the assigned el-
ements, K is the stiffness matrix for the beam, and X is
the vector of displacements. The K matrix is actually the
combination of all the stiffness matrices for each individual
element of the beam. Since the endpoints of each element
interact with the endpoints of an adjacent element, the K
matrix takes this point into consideration. Consider a two
element beam (Figure 9) with 2 elements, A and B, where
A has endpoints 1 and 2 and B has endpoints 2 and 3. A
has its matrix shown as

A [k K
Ko=1.4 ;A ®)
[ ka1 ko
And B has its corresponding matrix shown as
kB_ | ki (4)
[k L

Therefore, the corresponding stiffness matrix for the beam
in figure 5 will be

KA KA 0
K=| k& d+xB B (5)
0 kB kB

‘We have written a program which generates a VHDL-AMS
model for a cantilever beam given the dimensions of the
beam and the number of elements. The models are gener-
ated rapidly using this program. The program concentrates
on filtering out useless terms, such as ignoring the 0 terms
in the K matrix and using the boundary condition which
assumes that the deflection at the fixed end is 0. In Figure
7 we show a model generated for a beam modeled with only
one element:

entity FEABEAM is

end entity FEABEAM;

architecture behavior of FEABEAM is
constant FO: real:=1.0e-5;

constant L: real := 80.0e-6;
constant W: real := 20.0e-6;
constant H: real := 2.0e-6;
constant EZ: real := 170.0e9;
constant IZ: real := (WxHxHxH)/12.0;
constant EI: real := EZxIZ;

constant L3 :real := L*LxL;

constant k : real := 3.0%EI/L3;
constant L2 :real := Lx*L;

quantity V1 : real;



begin
V1 == FO/k;
end behavior;

Figure 7. One Element Beam Model

The model in Figure 7 was reduced from a two by two ma-
trix to just one element due to the boundary condition that
deflection at Node 0 is 0. So column 1 and row 1 of the ma-
trix are eliminated from consideration. Thus the deflection
at node 1, called V1, is dependent only on the stiffness of
the single element. Figure 8 describes the model generated
for a beam partitioned into five finite elements:

entity FEABEAM is
end entity FEABEAM;

architecture behavior of FEABEAM is
constant F5: real:=1.0e-5;

constant L: real := 80.0e-6/5.0;
constant W: real := 20.0e-6;
constant H: real := 2.0e-6;
constant EZ: real := 170.0e9;
constant IZ: real := (WxH*H*H)/12.0;
constant EI: real := EZ*I1Z;
constant L3 :real := L*L*L;
constant k : real := EI/(16.0%L3);
constant L2 :real := L*L;
quantity V1: real;
quantity V2: real;
quantity V3: real;
quantity V4: real;
quantity V5: real;
begin

Vi == (2.0%V2- V3);

V2 == 2.0%V1;

V2 == -2.0%V3 + V4;

V3 == 2.0%V4 - V5;

V4 == (k*V5 - F5)/k;

end behavior;

Figure 8. 5 Element Beam Model

The model in Figure 8 results in a system of five equations
and five unknowns. Thus, it can be solved quite simply.
Thus, FEA may be incorporated into VHDL-AMS designs
to aid in the rapid prototyping of systems. In the future,
the program will be modified so that the models created
will input the parameters via input file. This will aid the
designer since the designer will not have to continue to re-
compile the models each time a set of beam parameters or
different number of elements are chosen. As FEA is incor-
porated into VHDL-AMS, greater flexibility will be given
to MEMS designers in the future.
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Figure 9. FEA 2 element beam

5. RESULTS OF FEA ON CANTILEVER
BEAM

The FEA models generated were simulated on the
SEAMS][12] simulator. The results were compared to AN-
SYS FEA models of an elastic 1-D static beam with the
same number of elements. ANSYS was used for the com-
parison since it has been shown to be highly reliable for
these types of measurements. The following tables shows
results for a beam with dimensions 80x20x2 microns with a
constant load applied to the free end of the beam for both
the 3 element and 5 element cases.

VHDL-AMS | ANSYS. | Diff,

Node 10°m | 10°m | %
0 0.0000 0.0000 [ 0.0000
1 0.2509804 | 0.11155 | 124.93
2 0.5019608 | 0.39041 | 2857
3 0.7529412 | 0.75294 | 0.00547

VHDL-AMS | ANSYS. | Diff.

Node 10°m | 10°m | %
0 0.0000 0.0000 0.0000
T 0.05782588 | .042165 | 37.1419
2 0.1156518 0.15661 | 26.1466
3 0.1734776 0.32527 | 46.6665
4 0.4626071 0.53007 | 12.7271
5 0.7517365 0.75294 | 0.1598

The errors for the FEA model are somewhat high for beams
with fewer elements. However, the error at the end of the
beam is negligible. Some of the error may have been intro-
duced with some simplifing assumptions. One may create a
more detailed model for FEA; this should be able to reduce
the errors at each node to an acceptable level.

6. ADVANTAGES OF THIS APPROACH

The above examples illustrate how VHDL-AMS can be used
for system design involving multiple energy domains. The
language gives a unified approach to dealing with multiple



domains. VHDL-AMS also allows for the definition of phys-
ical types. For example, ”time” is a standard VHDL-AMS
type. This feature facilitates understanding of domain in-
teractions and also simplifies translations of units between
energy domains. VHDL-AMS encourages concentration on
system rather than component considerations,encapsulates
low-level information,encourages hierarchical, evolutionary
design and reuse, and provides component designers with
concrete specifications for their work. It is compatible with
the use of component libraries which are already being de-
veloped. In addition, it provides a comfortable path into
the MEMS design area for electrical and computer engi-
neers. It also encourages the development of MEMS tools
which interface will with current hardware / software de-
sign tools. It encourages decoupling of system design from
low-level physical considerations, while providing support
for simulations which take physical behavior into account.
It should be possible to provide VHDL-AMS interfaces to
powerful MEMS simulation systems[10] already under de-
velopment. VHDL-AMS supports simulation of dynamic
system behavior and can model both continuous and dis-
crete events, thereby providing support for the simulation
of complex physical systems.

7. POSSIBLE DRAWBACKS

Some limitations of the approach we have described here
include the effort required to interface VHDL-AMS to ex-
isting simulators, the present lack of graphical interfaces for
VHDL-AMS modeling and simulation, and the lack of sym-
bolic computation. Some flaws in VHDL itself have been
pointed out[2], which may necessitate some redesign both
of VHDL and of VHDL-AMS. But we believe that the ad-
vantages listed above are more than sufficient to justify our
methodology.

8. CONCLUSIONS AND FUTURE RESEARCH

‘We have presented examples showing how VHDL-AMS can
be used to further the development of commercially viable
MEMS systems. We are continuing to develop a library of
parts like those presented here. In particular, we are devel-
oping a model of interacting arrays of cantilever beams and
beam models in which more complicated behaviors (such
as fractures, e.g.) can be simulated. In addition, we will
expand the FEA capabilities in our programs. Future re-
search will also include extending our modeling techniques
to other domains, including the fluidic domain, and inte-
facing our VHDL-AMS descriptions with domain-specific
simulators.
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