
AGENT BASED MODELING AND SIMULATION OF BIOMOLECULAR REACTIONS

Vaishali Vallurupalli and Carla Purdy
University of Cincinnati

ECECS Department
Cincinnati, OH 45221

vallurv@uc.edu,carla.purdy@uc.edu

Abstract

We present an agent-based, three-dimensional model of phage lambda, a virus infecting E. coli which exhibits two phases, lysogenic
and lytic. This process is useful for bio-based sensors or switches and is a widely studied gene regulatory system. We model system constituents
as software agents. Complex system behavior emerges from local agent interactions. Agent based modeling lets us study how individual
parameters affect overall system behavior. This bottom-up approach is an alternative to top-down approaches using differential equations and
stochastic simulation. It can model any system of biomolecular reactions, with applications in physiology, pharmacology, medicine,
environmental monitoring and homeland security.

1. Introduction

Traditionally, biomolecular reactions have been studied and analyzed using ordinary differential equations
(ODE) or stochastic simulation. The ODE model has been employed extensively for modeling systems with either a
few or a moderate number of factors in which effects of interest tend to be sparse and linear or of low-order. In
these systems higher-order interactions are typically negligible and errors are normally distributed [4]. Noise is
typically aggregated into one term [9]. Stochastic models are effective for systems with a large number of
components, with each component having simple interactions and few states. However, certain systems, such as
biological cells, have a significant number of components whose interactions are complex [3]. The main objective of
this work is to model and simulate a gene regulatory system and its constituent reactions using agent-based
modeling (ABM) and to compare this approach against the traditional approaches. We have modeled our system
using the Unified Modeling Language (UML) and simulated it using a 3D visualization engine, BREVE. [1]

1.1. Agent Based Modeling (ABM)

Most biological systems are complex in nature. A complex system has many of its components coupled in a
non-linear fashion. The variables in a complex system can exhibit complicated, discontinuous behaviors over time.
Most complex systems exhibit the emergence property, i.e., the formation of complex patterns from simpler
interaction rules. Thus the global behavior of the system can be determined by defining the lower-level interaction
rules among the components [5]. One such complex biological system is the gene regulatory system of the phage
lambda virus injected into an E. coli cell, which we model here.

Developing software for agent-based systems can make use of many modern software engineering
techniques, including decomposition, or dividing a problem into small, manageable parts, abstraction, or choosing
which details of a problem to model and which to suppress, and organization, or identifying and managing the
relationships among the various system components [6,7]. The agent-based model is a bottom-up paradigm wherein
the lowest level entities, called agents, interact with each other autonomously.

An agent is an encapsulated computer system that is situated in some environment and that is capable of
flexible, autonomous action in that environment in order to meet its design objectives [7]. The idea is to construct
the model using agents and to simulate the interactions of those agents in parallel to model the real phenomena on a
system level. The agents are situated in space and time and have some properties and certain sets of local interaction
rules. Though intelligent, they cannot by themselves deduce the global behavior resulting from their dynamic
interactions. Thus the system is found to evolve from the micro level to the macro level. Thus agent-based modeling
uses a bottom-up design strategy rather than a top-down strategy. Agents are commonly assumed to have well-
defined bounds and interfaces, as well as spatial and temporal properties, including such dynamic properties as
movement, velocity, acceleration, and collision. They exist in an environment which they sense and can
communicate with through their interfaces. They are assumed to respond in a timely manner to changes in their
environment. They are autonomous, encapsulating a state and changing state based on their current state and
information they receive. [7,9]

In agent based modeling the problem is decomposed so that the agents are equipped with knowledge to
solve the problem. As a result, the control complexity is reduced due to the decentralization achieved by
decomposition. An agent-based approach helps us to study the emergence of complexity of the system, in that the
scale and effect of various parts on the global behavior and vice-versa can be studied in greater detail and with much
more accuracy. Thus, in contrast to systems based on differential equations, an agent-based system may possess

many factors, may exhibit non-linear and even non-polynomial behavior, may have many higher-order interactions,
may have a variety of possible errors, with differing distributions, and may provide many different types of
performance measures. [4]

One important benefit of agent-based systems is that they can exhibit emergent behavior, or higher-level
behavior which is a consequence of individual agent interactions. It is often said that "the sum of the parts of an
ABM is greater than the whole". [9] Agent-based systems also allow for easy modification of interaction rules or
behavior, as well as for viewing agents or groups of agents at different levels of abstraction, as appropriate. Agent-
based systems also allow for the study of system fluctuations, especially those in which a small change in a variable
or a discontinuity can have extreme consequences on the system as a whole. [9]

1.2. Comparison of ODE and Stochastic Simulation Approaches to the Agent Based Model
 Modeling the phage lambda gene regulatory system using differential equations approach as in [11,14]
requires that the various processes be converted into chemical equations which are later converted into differential
equations. One obvious limitation is that the ODE method does not account for spatial aspects. Dimerization of
monomer proteins, dissociation of dimers, repressor binding to Operator regions, and RNA polymerase binding to
Promoter regions are all processes in which the spatial aspects of the DNA play a crucial role. These details are not
modeled in the ODE and approach. Agent-based models account for these spatial and temporal aspects and hence
can be closer to actual biological processes. Another simplification in ODEs is that the protein molecules are
modeled as concentrations and the actual reactions as change of these concentrations with time. This leads to
modeling the system in a structured and programmed manner where reactions happen in sequence (as in the ODE
approach) at a given rate. However, actual biological processes happen concurrently and the rates at which these
processes proceed may be affected by many factors, all of which are not modeled by the ODE approach.

Stochastic simulations also do not usually take into account the spatial aspects of the simulation. In many
stochastic simulations, reactions also proceed sequentially, although in a random order. In addition, stochastic
simulations may not incorporate geometric information. With an agent-based approach, many processes work
concurrently and hence complex and often unpredictable behaviors can be observed.

1.3. Issues with ABM
 Modeling a system with bottom-up approach requires that every individual agent’s behavior be described.
The greater the number of details that go into describing the behavior of the system, the greater is the computational
power that is required to simulate the behaviors of all constituent agents. This is a limitation in modeling large
systems using ABM. [9]. A reasonable approach is to provide several levels of abstraction and granularity, which
can be chosen depending on the level of detail needed and the computational resources available. Here we are
modeling reactions at the molecular level, for a relatively small number of molecules, so we have chosen a very
fine-grained level of modeling.

The objective of simulating a system is usually to predict the outputs at untried inputs or to optimize a
function of the input parameters. ABM models cannot do either. Rather, a more relevant analysis using ABM is to
study the system, search for insights and get a basic understanding of the agent-based model. The insights that we
can hope to get are in identifying the important factors and their interactions, as well as their effects, and the
locations, thresholds and ranges where interesting things like fluctuations can occur [4]. ABM models can also be
combined with heuristic techniques which search for parameter values to optimize a desired behavior. [26]

1.4. Unified Modeling Language (UML) and ABM

The Unified Modeling Language (UML) is a widely-used graphical language for describing overall system
design. It includes structures for describing individual classes (class diagram), related classes (ER or entity-
relationship diagram), and system and object states [6,22]. Dinsoreanu et al [18] have presented a methodology for
designing the agent-based systems and models expressed in UML notation. The methodology has the following
steps:

1. Specification of functionality: The functionality of the system is expressed in terms of the various tasks of
the agents.

2. Designing the organizational model: Agents constituting the system, their respective tasks and rules that
need to be followed by each of them are identified.

3. Defining the interaction model: The communication protocols between the agents are defined.
4. Designing the environment model: The environment in which the agents operate and interact is defined.

Webb and White [19] have modeled and simulated the glycolic pathway within the cytoplasm and the TCA
cycle that takes place within the mitochondrial matrix using the CellAK approach. The system is decomposed into
an inheritance hierarchy of classes and a containment hierarchy of actors using UML class diagrams. Each actor,
also called a capsule, possesses a state diagram which models the reactivity of the actors to real-time events and
internally-generated timeouts. The model was validated against Gepasi [23].

Cannata et al [20] proposed the Multi Agent System (MAS) approach to effectively model a biological
system using mediating artifacts which enable agents to engage in different types of interactions. The approach has
the advantage that it can provide the right level of abstraction to model a biological system. For simulating
biological systems, they propose models which allow us to analyze the system for different view points, i.e.,

1. static-structural view with a bio-molecular knowledge of components, their properties and their
relationships.
2. dynamic view which shows how the components react to environment and other agents over a period of
time.
3. functional view which shows how the functions are performed by the different agents.

1.5. BREVE
 Many simulators were studied for ease of use and availability for our purpose of simulating decentralized
behaviors. There are a few popular packages for simulation of decentralized systems which provide for 2D
visualization. Swarm [15] and StarLogo [16] are some of the popular packages commonly used for agent behaviors
but, compared to BREVE, they do not provide for 3D simulations or visualizations. On the other hand, there are
some commercial simulators like the one described in [17] which provide for 3D graphics and physical simulations
but which are quite costly.
 BREVE [1] is a 3D simulation engine developed to provide quick and easy simulations of decentralized
systems. It is an open-source package available for Mac OS, Linux and Windows platforms. It allows users to define
and visualize decentralized agent behaviors in continuous time and continuous 3D space. The package comes with
its own interpreted object-oriented scripting language called steve, an OpenGL display engine and collision
detection. BREVE also has a library of built-in classes and provides for graphical 3D visualization and collisions
between 3D bodies. These features remove a significant amount of programming overhead. A special emphasis is
placed on simulating lower-level interactions in order to evolve highly realistic macroscopic behaviors.

2. System to Be Studied

Escherichia coli (E. coli) is an intestinal bacterium and is a commonly studied prototype for bacteria. When
it is exposed to a dose of ultraviolet light, it stops reproducing and starts to produce a crop of viruses called phage
lambda into the culture medium. This process of rapid reproduction of the phage lambda viruses is called lysis. The
newly-formed lambda phages multiply by infecting fresh bacteria. Some of the infected bacteria lyse further causing
more phages to be produced whereas some bacteria may carry the phage in a passive form causing the bacteria to
grow and divide normally. This process of passive reproduction of the phage lambda is called lysogeny.

This switching of the virus between two states, i.e., from the passive form or lysogeny to the activated form
or lysis is similar to the ON and OFF states of the digital inverter. Jacob and Monod [25] showed that this switching
is a basic example for the turning on and off of genes. Thus an accurate model of the lysis and lysogeny processes
in E. coli is of interest in itself and can also form the basis for modeling more complex processes in other organisms.
The two states are described more completely by:

Lysogenic state: Only a single phage chromosome is turned on. It grows and replicates passively, as part
of the E.coli bacterium. However, when irradiated with ultraviolet light, almost every lysogen in the
bacterium enters the lytic state.
Lytic state: Various sets of phage genes turn on and off in a regulated manner. Consequently, the lambda
chromosome is extensively reproduced and 45 minutes later the bacterium lyses and releases new phage.
[10]

2.1. Gene Expression

Genes which are expressed are said to be on whereas those not expressed are said to be off. The expression
of the genes is regulated. The regulation of genes can be easily visualized in the switching of the phage lambda from
the lysogenic to the lytic state.
 Transcription is the first step in gene expression. The sequence of base pairs along one of the gene strands
is copied into a linear molecule called RNA. A gene is said to be turned on if it is being copied into RNA and off it is
not. There are various kinds of RNA molecules, some of which are end products, while others are messenger RNAs

(mRNAs) which specify the designs of proteins. Genes are transcribed into mRNA by an enzyme called RNA
polymerase.

 The process begins with the RNA polymerase binding to a site on the gene called promoter. The promoter
is a region of the gene extending over 60 base pairs. We consider two promoters, Pr and Prm in our model. After
binding, RNA polymerase travels away from the promoter region along the gene, synthesizing mRNA as it moves,
resulting in unwinding regions of DNA. This unwound sequence then forms the template for the complementary
mRNA strand. Figure 1 shows a segment of DNA with the directions of the two promoters indicated.

Figure 1. Basic structure of the phage lambda DNA

RNA polymerase can be helped or prevented in its process of transcription of the gene by the regulatory
proteins that bind to specific sites on the DNA called operators. In Figure 1, three operator sites, Or1, Or2, and
Or3, are shown. A negative regulator protein prevents transcription whereas a positive regulator protein aids
transcription. Repressor or Rp is a protein of 236 amino acids which fold into two distinct domains called the amino
and carboxyl domains. Figure 2 shows the formation of an Rp dimmer, as depicted in our system.. Two Repressor
monomers associate to form Repressor dimers. The Repressor domains use their amino domains to bind to DNA at
an operator site. [10]

Figure 2. Rp monomer collides with another Rp monomer to form an Rp dimer

Cro is a protein made up of 66 amino acids folded into a single domain. Cro monomers have high affinity
for each other and hence form a dimer. A Cro dimer binds to the operator sites on the DNA. Figure 3 shows the
formation of a Cro dimmer, as depicted in our system.

Figure 3.Cro monomer collides with another Cro monomer to form a Cro dmer

Operators are specific sites on the DNA molecule which may vary in the strength with which they bind the
protein. There are three operator sites, OR1, OR2 and OR3 which are relevant to our model of the lambda phage.
Each of these operator sites vary in their affinity for Rp and Cro. They are depicted in Figure 1 above.

2.2. Lysogeny
Repressor dimers have higher affinity for OR1 and hence bind to it first. If OR1 is filled, OR2’s affinity is

increased. Hence in the presence of high concentrations of the Repressor dimer, OR2 is filled almost simultaneously
with OR1. Thus binding of Repressor to operators is cooperative. When a Repressor binds to site OR2, it covers the
part of the DNA which is necessary for the polymerase to bind to PR. Thus, it prevents RNA polymerase from
binding to the Cro gene and turns it off. Consequently, it helps polymerase to bind and begin transcription of the cl
gene in a lysogen. Thus, repressor exerts both positive and negative control. this is shown in Figure 4.

Figure 4. Repressor action

2.3. Lysis

Repressor at OR1 and OR2 together, keeps Cro off and stimulates transcription of its own gene, cl.
Repressor is synthesized continuously as long as cells grow and divide. If Repressor concentration increases, it binds
to OR3 and turns its own gene off, thus preventing further synthesis of repressor. Once the repressor concentration
falls down to a level such that OR3 is empty, then cl gene is turned on and normal synthesis continues. Thus a
constant Repressor concentration is maintained, despite fluctuations in the growth rate.

To change the state of the switch, ultraviolet (UV) light is applied. UV light leads to a significant change in
the behavior of a bacterial protein called RecA causing it to cleave λ Repressor monomers. The cleavage effectively
inactivates Repressors since they are no longer able to dimerize and the monomeric forms have low affinity for the
operator. As a result, there are few dimers to replace the ones which fall off the operator sites. As Repressor dimers
fall off OR1 and OR2, the synthesis of Repressor is stopped. Hence no further Repressor to bind to the empty
operator sites is available. Consequently, Polymerase binds to PR to begin transcription of the Cro gene.

Cro dimers bind non-cooperatively to the operator sites. The affinity of Cro for the three operator sites is
opposite to that of the Repressor. Hence, if a Cro dimer approaches the operator sites, all of which are empty, then
Cro binds to OR3. This prevents binding of Polymerase to PRM and abolishes further synthesis of Repressor. At this
point, the switch is said to be flipped and lytic growth continues. As PR is turned on and Cro is transcribed, more
Cro is synthesized until it fills OR1 and OR2. In summary, Cro first stops Repressor synthesis and after some time
turns off its own gene. This is depicted in Figure 5.

Figure 5. Cro action

 The phage lambda virus has one of the simplest gene regulatory systems which shows an interesting
phenomenon analogous to a switch (from lysogenic to lytic state and vice versa), when injected into E. coli bacteria.
The various processes that go into the gene transcription, such as Repressor dimerization, dissociation and decay,
and translation, are modeled in our system along with spatial aspects like the promoter and operator regions of the
DNA. The detailed biological mechanisms and nomenclature can be found in [10].
 Tsui has developed an agent-based model of the lambda switch. Her paper shows that agent-based
modeling is an effective approach for studying gene regulatory systems at the molecular level. Our work is an
extension of her work [2]. Much work has been done on phage lambda using the differential and stochastic models.
See, for example [11], [12], [13] and [14]. We would like to study such factors as space, concentration of proteins
and the molecular-level dynamics which influence the lytic and lysogenic process of a phage lambda system and
compare the qualitative and quantitative results against those predicted by models based on ordinary differential
equations or stochastic simulation.

3. Modeling Specifics
 We have modeled a basic phage lambda DNA structure and protein behaviors based on Ptashne’s extensive
work on the phage lambda virus and have followed his notations of names and structure [10]. The reactions shown
in figure 6 [14] have been modeled using the agent-based approach.

3.1. Agent Rules

BREVE, the language we will use, provides for in-built classes of the type Mobile and Stationary, both
derived from a base class, Object. Agents of type Repressor, Cro, RecA, and RNA polymerase (RNA Poly) are
modeled as agents of type Mobile. Each of these agents has an identification, shape, color, velocity and lifetime.
Some of the local agent rules are:

• Repressor, Cro, RecA, RNA poly are initialized as monomers.
• All mobile molecules can move in a fixed volume around the DNA..
• All mobile molecules have random motion with a fixed, equal velocity.
• All molecule agents have a lifetime for which they would be present in the environment.
• A monomer (Repressor or Cro) will form a dimer upon collision with another monomer.
• A dimer (Repressor or Cro) will dissociate into its constituent monomers after a certain period of time

within its lifetime.
• Agents decay after their lifetime has ended.
• RecA on colliding with a Repressor monomer causes it to be incapable of forming a dimer.
• Dimer agents (Repressor and Cro) sense the affinity and distance to operator sites. If any of the operator

sites are not filled, they attach to the appropriate site. Else, they continue to move randomly.
• Promoter agents sense the status of the operator sites and accordingly set their own states.

• RNA Polymerase agent senses the status of the promoters. If one of them is turned on, then it binds to it
and starts synthesizing either Repressor or Cro until it reaches the end of the gene sequence.
The Controller class, which is analogous to the main() class in the C++ language, is responsible for

initializing all the agents, monitoring their behavior and updating the global behavior of the system. It does not
however centrally control the system and thus provides for local agent behaviors to evolve over time.

Figure 6. The reactions comprising the phage lambda switch

3.2. UML Description
 For our system we have used the UML constructs class, entity-relationship diagram, and state diagram.

3.2.1. Class and Entity-Relationship Diagrams

Class is a template for a set of objects that share a common set of attributes and operations. Figure 7 gives
an example of a class. The first section specifies the name of the class. The second section specifies the attributes
of the class. For example, type is an attribute of the class RpMonomer. The third section specifies the operations
performed by the class. For example, to get-type is an operation performed by the RpMonomer class to access the
type attribute. In our system each class corresponds to a type of agent. The complete set of classes we have used is
given in Figure 8.

Figure 7. Example class--RpMonomer

2Rp
k

RpRp
)Rpdim(→+

RpRp
k

Rp
)Rp(glsin + →2

2Cro
k

CroCro
)Crodim(→+

CroCro
k

Cro
)Cro(glsin + →2

 →)(Rpdeck
Rp

 →)(Crodeck
Cro

2
Rpdis

2 Rp Pr
k

RpPr + →
)2(

2
)rprs(Rp

2 PrRp
k

RpPr
2 →+

4
)rprs(Rp

22 PrRp
k

RpPrRp
4 →+

22
)dis(Rp

4 RpPrRp
k

PrRp
4 + →

CroPrm
k

RNApPrm trans ++ →

Figure 8. The class diagrams of agents in the system

Entity-relationship or ER diagram shows the relationships and interfaces between classes. The ER diagram for the
phage-lambda switch mechanism is shown in Figures 9-11. In Figure 9, the legends for the three basic types of
realationships are given. Is-a relationship between classes indicates inheritance of attributes and operations by the
class in the lower-level hierarchy of the one above it. In Figure 10, Operator and Promoter are classes which both
inherit the properties of the class DNARegion. Has-a relationship indicates that the class is a composition of
class(es). In Figure 11, RpMonomer is a class which is a component of Class RpDimer. All other relationships in the
ER diagrams are of the generic type "uses".

Figure 9. Legend for class diagram notations

Figure 10. ER diagram for system’s stationary objects

Figure 11. ER diagram for system’s mobile objects

The agent-based approach allows us to view the state of the system from multiple points of view. The phage lambda
system after initialization with enough repressor concentration goes into the lysogenic state. It continues to be in the
same state until UV light is applied. It then goes into the lytic state.

3.2.2. System State Diagrams
 The agent-based approach allows us to view the state of the system from multiple points of view. The
phage lambda system after initialization with enough repressor concentration goes into the lysogenic state. It
continues to be in the same state until UV light is applied. It then goes into the lytic state. This is shown in Figure
12. The Rp and Cro Dimer agents after being initialized are in a state of random motion. However, if they sense that
the operator sites are empty, then they bind to that particular site(s). This is shown in Figure 13.

Figure 12. State machine representing the system states

Figure 13. State machine representing the states of a Repressor dimer agent

4. Results
We have modeled the phage lambda system as defined in UML. Some example snapshots of the

simulation are shown in Figures 14 and 15. In these figures the light purple region represents the promoter, Pr
(right) and the light brown region is the Prm (left). The dark blue regions are the Operators, Or1, Or2, and Or3 (right
to left). The small red spheres are the Rp monomer agents whereas the large red spheres are the Rp dimer agents.
The blue spheres represent Cro, the larger ones being the Cro dimer and the smaller ones being the Cro monomer
agents. The black spheres are the RecA agents and the grey spheres represent the cleaved Repressor monomers.

Figure 14. DNA and Repressor as simulated in Breve

Figure 15. Cro and RecA in action
4.1. Breve Simulation Results

Some details of our program, written in BREVE's steve language are given here.
• RPMONOMER_COUNT and RECA_COUNT represent the intial number of molecules of repressor

monomer and RecA monomers, respectively, used in the simulation.
• RECA_INIT_TIME is the time after start of simulation that RecA monomers are initialized (applying UV

light).
• RPMONOMER_LIFETIME, CROMONOMER_LIFETIME, RECAMONOMER_LIFETIME,

RPDIMER_LIFETIME, CRODIMER_LIFETIME are the total time for which each of the molecule agents
are active in the simulation.

• RPMONOMER_VEL, CROMONOMER_VEL, RNA_VEL, RECA_VEL, RPDIMER_VEL,
CRODIMER_VEL are the velocities of the molecule agents.

• RP_TO_OR1_TIME, RP_TO_OR2_TIME, RP_TO_OR3_TIME are the times for which the repressor are
bound to the operator sites.

• CRO_TO_OR1_TIME, CRO _TO_OR2_TIME, CRO _TO_OR3_TIME are the times for which the Cro
agents are bound to the operator sites.

Table 1 gives the values of the parameters used in the basic simulation. The graph for these values is shown

in Figure 16(a). The initial concentration of Repressor monomers is 20. As the simulation proceeds, the
concentration of Repressor falls down gradually, especially after t = 15 seconds when RecA is initialized. The
concentration of Cro is found to increase gradually thereafter.

We also did a series of experiments to study the effects of changes in the various parameters. We present
some examples here.

• Figure 16(b) shows the effect of increase in initial Repressor concentration, we increased it to 25. It can be
seen that Cro was synthesized only after 20 seconds as against 17.5 seconds in Figure 16(a). The rate of
Repressor decay is much slower than in the former case.

• Figure 16(c) shows the effect of decreasing initial Repressor amount to 15 molecules The effect of the
change is the rapid synthesis of Cro.

• Figure 16(d) shows the effect of modifying the RecA initialization time to 10 seconds instead of 15
seconds. We observe that Cro starts being produced after just 12 seconds.

• Figure 16(e) shows the effect of decreasing the lifetime of the Repressor dimer to 4 seconds. Decreasing
the lifetime of a Repressor dimer effectively reduces the time it is bound to the operator site. Hence, the
amounts of both Rp and Cro are prone to fluctuate.

• Figure 16(f) shows the effect of increasing the times that the Repressor is bound to the operator sites. As a
result, the synthesis of Repressor takes place for a longer time than is the case in 16(a). So, for the same
amount of RecA molecules, with the same velocities, it takes a longer time to empty OR1 and OR2 and
hence Cro is not synthesized at a faster rate.

Table 1. The base parameter values for simulation of the phage lambda system

4.2. Comparison to ODE and Stochastic Simulation Results
Krishnan and Purdyl [11] have simulated some of the phage lambda system equations of Figure 6. Their

results are shown in figure 17. As can be seen, for an initial 1uM repressor concentration, the concentration of Cro
in the absence of Rp was found to be 0.2uM.

At the system level, the kinetics of a reaction is determined by the reaction rate constant and relative
concentrations of the reactants. At the molecular level, however, the kinetics is a function of the probability of
collisions between individual molecules of the participating reactants, per unit time [21]. They are also influenced
by the reactants’ initial concentrations as well as their respective affinities. Khan et al [21] have estimated relative
reaction times in terms of the relative rate constants to be

2

1

2

1

k

k

v

v = or
11

21

11

21

k

k

v

v =

where v1 and v2 are the velocities and k1 and k2 are the kinetic constants of two reactions 1 and 2 which have equal
initial concentrations of reactants. The reaction time thus obtained is scaled against the reaction which is the slowest,
having the least rate constant among a set of reactions.

For our calculations, we have calculated the concentrations of each agent molecule using the formula

where C is the concentration of molecules of a given type, N is the number of molecules of that type, A is the
Avogadro number (6.023 x 1023) of molecules in a mole and V is the volume within which these reactions occur. In
our BREVE simulation, we have modeled the DNA structure in terms of the base pairs as obtained from [10]. As a
result, the volume was found to be approximately 0.15 x 10-15 liters.

RPMONOMER_COUNT 20
RECA_COUNT 50
RECA_INIT_TIME 15
RPMONOMER_LIFETIME 20
CROMONOMER_LIFETIME 20
RECAMONOMER_LIFETIME 60
RP_TO_OR1_TIME 1
RP_TO_OR2_TIME 2
RP_TO_OR3_TIME 3
RPDIMER_LIFETIME 7
CRO_TO_OR1_TIME 3
CRO_TO_OR2_TIME 2
CRO_TO_OR3_TIME 1
CRODIMER_LIFETIME 7
RPDIMER_VEL 20
RECA_VEL 60
CRODIMER_VEL 20
RPMONOMER_VEL 40
CROMONOMER_VEL 20
RNA_VEL 5

V

AN
C =

-5

0

5

10

15

20

25

0.
49

5
2.

99
5

5.
49

5
7.

99
5

10
.49

5

12
.99

5

15
.49

5

17
.99

5

20
.49

5

22
.99

5

25
.49

5

27
.99

5

30
.49

5

32
.99

5

35
.49

5

37
.99

5

40
.49

5

42
.99

5

45
.49

5

Rp Conc.

Cro Conc.

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

Rp Conc

Cro Conc

 (a) Simulation with values of Table 1 (b) RpMonomer_Count = 25

-5

0

5

10

15

20

25

0 10 20 30 40 50 60

Rp Conc

Cro Conc

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Rp Conc

Cro Conc

 (c) RpMonomer_Count = 15 (d)RpMonomer_Count = 15 and RecA_Init_Time = 10 seconds

-2

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

Rp Conc

Cro Conc

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Rp Conc

Cro Conc

 (e) RpDimer_Lifetime = 4 seconds (f) Rp_to_Or1 = 2, Rp_to _Or2 = 2

Figure 16. Agent-based modeling and simulation of Rp vs Cro, examples cases

Figure 17. ODE modeling and simulation of Rp vs Cro [11]

Krishnan and Purdy [24] have also simulated the stochastic modeling of the phage lambda system and have
obtained the result shown in Figure 18.

Figure 18. Stochastic modeling and simulation of Rp vs Cro [24]

In order to compare our result with those of Figure 18, we have scaled our system with the same input
concentrations for Rp and RNA polymerase [24]. The rate constants of Figure 6, as obtained from [10], were also
modeled such that all reactions were scaled against the slowest reaction among the set of reactions. With the kinetic
constants scaled as the ones in [14] and [24], and the same input concentrations as in [24], we initialize RecA agents
after just 0.5 seconds of simulation time (Figure 19). For this simulation, we use the parameter values given in
Table 2. We see that the general shape of the curves from 0-50 seconds in Figures 18 and 19 seems to be similar.
But there are several factors which differ in the two simulation models, and we are still experimenting with the
correct values for each model, so we are not yet able to compare the two models in enough detail to determine
definitively how well they match.

-10

0

10

20

30

40

50

0 10 20 30 40 50

Time (in secs)

N
o

.
o

f
m

o
le

cu
le

s

Rp Conc.

Cro Conc.

 Figure 19. Simulation using parameters of [24] and agent-based modeling

Table 2. The parameter values for simulation of phage lambda system for comparison with [24]

5. Conclusions and Future Work

In modeling biological processes, we felt it was necessary to incorporate the spatial and temporal properties
of the molecules and the gene to provide for a more accurate model of the system. Hence, we modeled and
simulated the gene expression of the phage lambda virus using the ABM paradigm. The behavior of the genes and
the regulatory proteins has been modeled for three-dimensional visualization using BREVE.

Comparing our work to [11], we find that our agent-based approach has the advantage of visualizing and
understanding the system at the molecular level. By including the knowledge of actual kinetics at the molecular
level, the accuracy of the model can be improved significantly. Secondly, as we can see from the graphs, we can

RPMONOMER_COUNT 50
RECA_COUNT 100
RECA_INIT_TIME 0.5
RPMONOMER_LIFETIME 20
CROMONOMER_LIFETIME 50
RECAMONOMER_LIFETIME 60
RP_TO_OR1_TIME 1
RP_TO_OR2_TIME 2
RP_TO_OR3_TIME 3
RPDIMER_LIFETIME 5
CRO_TO_OR1_TIME 3
CRO_TO_OR2_TIME 2
CRO_TO_OR3_TIME 1
CRODIMER_LIFETIME 5
RPDIMER_VEL 20
RECA_VEL 60
CRODIMER_VEL 20
RPMONOMER_VEL 5
CROMONOMER_VEL 20
RNA_VEL 5

observe the functioning of the system in the presence of random fluctuations in the expression of genes. Also, the
effect of varying various parameters like concentrations and velocities can be observed and studied. Our model was
found to be easy to scale in terms of the both reaction parameters and the level of detail. Hence, we anticipate that
the phage lambda system can be modeled to include detailed description of the gene structure and behaviors of
molecule agents. The model could also be ported to a parallel environment for the simulation of more complex
systems.

REFERENCES

[1] J. Klein, "BREVE: a 3D environment for the simulation of decentralized systems and artificial life," Proceedings
of Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, 2002.

[2] G. Tsui, "λ-Switch - An agent-based 3D Simulation," CPSC502 Project Report, University of Calgary, 2002

[3] S. Arbesman, "The chai-calculus: A computational formalism and its relationship to biological processes ".
http://www.santafe.edu/education/reu/2003/files/arbesman.pdf. Accessed May 6, 2006.

[4] S. M. Sanchez, T. W. Lucas, “Exploring the world of agent-based simulations: simple models, complex
analyses”, Proceedings of the 34th Conference on Winter Simulation: Exploring New Frontiers, December 08-11,
2002, San Diego, California

[5] P. Fryer, “What are complex adaptive systems?”,
http://www.trojanmice.com/articles/complexadaptivesystems.htm. Accessed May 6, 2006.

[6] G. Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley, Reading, MA, 1994.

[7] M. Wooldridge, N.R. Jennings, “Intelligent agents: theory and practice”, Knowledge Engineering Review
10 (2) (1995) 115–152.

[8] M. Wooldridge, “Agent-based software engineering”, IEEE Proc. Software Engineering 144 (1) (1997) 26–37.

[9] E. Bonabeau, "Agent-based modeling: methods and techniques for simulating human systems," Proceedings of
the National Academy of Sciences, need volume number 2002, 7280-7287.

[10] M. Ptashne, A Genetic Switch: Phage [Lambda] and Higher Organisms, 2nd ed., Cell Press (Blackwell
Scientific Publications), 1992.

[11] R. Krishnan, C. Purdy, "Bio-inverter model and interface to digital hardware," Proceedings of the 48th IEEE
International Midwest Symposium on Circuits and Systems 2005, 766-769.

[12] G. K. Ackers, A. D. Johnson and M. A. Shea, "Quantitative model for gene regulation by lambda phage
repressor," Proceedings of the National Academy of Sciences, need vol number, 1982, 1129-1133.

[13] D. Mestivier, P. Y. Boelle, K. Pakdaman, A. Richard, J. P. Comet, G. Hutzler, C. Kuttler, A. Iartseva and F.
Kepes, "Modeling of λ phage genetic switch".

http://shum.huji.ac.il/~sorin/ccs/alex/ecoleThematiqueMontpellier2005.pdf. Accessed Oct 30, 2006.

[14] R. Weiss, G. Homsy, T. F. Knight Jr. Toward in-vivo digital circuits. In Dimacs Workshop on Evolution as
Computation, Princeton, NJ, January 1999.

[15] N. Minar, The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations. Santa Fe Institute,
1996.

[16] M. Resnick, "StarLogo: an environment for decentralized modeling and decentralized thinking," Conference on
Human Factors in Computing Systems, 1996, 11-12.

[17] Any Logic. http://www.xjtek.com. Accessed May 6, 2006.

[18] M Dinsoreanu, I Salomie, K Pusztai, “On the design of agent-based systems using UML and extensions,”
Proceedings of the 24th International Conference on Information Technology Interfaces, vol. 1, 2002, 205- 210.

[19] K. Webb, T.White., “Cell modeling using agent-based formalisms,” Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems(AAMAS), 2004, 1190-1196.

[20] N. Cannata, F. Corradini, E. Merelli, A. Omicni, and A. Ricci, “An agent-oriented conceptual framework for
biological systems simulation”, Transaction on Computation System Biology, 2005.

[21] S. Khan , R. Makkena , F. McGeary , K. Decker , W. Gillis , C. Schmidt, “A multi-agent system for the
quantitative simulation of biological networks”, Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, July 14-18, 2003.

[22] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide. Addison-Wesley, 1999.

[23] P. Mendez, “GEPASI: a software package for modelling the dynamics, steady states and control of biochemical
and other systems”, Computer Applications in the BioSciences (CABIOS), 1993,Oct, 9(5):563-715

[24] R. Krishnan, C. Purdy, “Optimized bio-inverter model and its interface to digital hardware”, Analog Integrated
Circuits and Signal Processing, Springer Series, 2006 (submitted for publication).

[25] F. Jacob, J. Monod, “Genetic regulatory mechanisms in the synthesis of proteins”, Journal of Molecular
Biology 3, 318-356.

[26] E. Namboodiri, P. Harten, and C. Purdy, Agent based modeling of environmental systems, Proceedings of the
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS), Dayton, OH, April 2005.

