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Abstract

We present an agent-based, three-dimensional nebgélage lambda, a virus infectifig coli which exhibits two phases, lysogenic
and lytic. This process is useful for bio-baseausses or switches and is a widely studied genelatmy system. We model system constituents
as software agents. Complex system behavior emdrgm local agent interactions. Agent based madelets us study how individual
parameters affect overall system behavior. Thisoboup approach is an alternative to top-down agghies using differential equations and
stochastic simulation. It can model any systembmfmolecular reactions, with applications in phiysiy, pharmacology, medicine,
environmental monitoring and homeland security.

1. Introduction

Traditionally, biomolecular reactions have beerd&d and analyzed using ordinary differential eipunet
(ODE) or stochastic simulation. The ODE model hasrbemployed extensively for modeling systems wither a
few or a moderate number of factors in which effeut interest tend to be sparse and linear or wfdaoder. In
these systems higher-order interactions are tygicagligible and errors are normally distributet].[ Noise is
typically aggregated into one term [9]. Stochastiodels are effective for systems with a large nemmbf
components, with each component having simple aoteans and few states. However, certain systeod) as
biological cells, have a significant number of caments whose interactions are complex [3]. The rabjactive of
this work is to model and simulate a gene regwasystem and its constituent reactions using agaséd
modeling (ABM) and to compare this approach agatihettraditional approaches. We have modeled ostery
using the Unified Modeling Language (UML) and siated it using a 3D visualization engine, BREVE. [1]

1.1. Agent Based Modeling (ABM)

Most biological systems are complex in nature. Mptex system has many of its components coupled in
non-linear fashion. The variables in a complexeystan exhibit complicated, discontinuous behaviwer time.
Most complex systems exhibit the emergence propémy, the formation of complex patterns from dienp
interaction rules. Thus the global behavior of $lgstem can be determined by defining the lowert@teraction
rules among the components [5]. One such completodical system is the gene regulatory system efghage
lambda virus injected into & coli cell, which we model here.

Developing software for agent-based systems canemae of many modern software engineering
techniques, includingecomposition, or dividing a problem into small, manageable paatstraction, or choosing
which details of a problem to model and which tpmess, andrganization, or identifying and managing the
relationships among the various system componérit$ [ The agent-based model is a bottom-up pamadiperein
the lowest level entities, called agents, inteveitth each other autonomously.

An agent is an encapsulated computer system thatusted in some environment and that is capable o
flexible, autonomous action in that environmenbider to meet its design objectives [7]. The iget construct
the model using agents and to simulate the interscbf those agents in parallel to model the pbgihomena on a
system level. The agents are situated in spacéimedand have some properties and certain setsaf interaction
rules. Though intelligent, they cannot by themseldeduce the global behavior resulting from theinaimic
interactions. Thus the system is found to evoleenfthe micro level to the macro level. Thus ageageld modeling
uses a bottom-up design strategy rather than aldem strategy. Agents are commonly assumed to hasle
defined bounds and interfaces, as well as spatidltamporal properties, including such dynamic props as
movement, velocity, acceleration, and collision.hey exist in an environment which they sense ana ca
communicate with through their interfaces. Thegy assumed to respond in a timely manner to chaingdeir
environment. They are autonomous, encapsulatistat@® and changing state based on their curretg atad
information they receive. [7,9]

In agent based modeling the problem is decomposetiat the agents are equipped with knowledge to
solve the problem. As a result, the control comipyexs reduced due to the decentralization achietgd
decomposition. An agent-based approach helps gaitly the emergence of complexity of the systenthat the
scale and effect of various parts on the globahbie and vice-versa can be studied in greateiildetd with much
more accuracy. Thus, in contrast to systems basedifferential equations, an agent-based system poasess



many factors, may exhibit non-linear and even nolysomial behavior, may have many higher-orderraatgons,
may have a variety of possible errors, with diffigridistributions, and may provide many differenpey of
performance measures. [4]

One important benefit of agent-based systems istlley can exhibit emergent behavior, or higheelev
behavior which is a consequence of individual ageteractions. It is often said that "the sum loé parts of an
ABM is greater than the whole". [9] Agent-basedtsyns also allow for easy modification of interantrules or
behavior, as well as for viewing agents or groupagents at different levels of abstraction, asrappate. Agent-
based systems also allow for the study of systestuhtions, especially those in which a small cleanga variable
or a discontinuity can have extreme consequencéseosystem as a whole. [9]

1.2. Comparison of ODE and Stochastic Simulation Approachesto the Agent Based M odel

Modeling the phage lambda gene regulatory systeimgudifferential equations approach as in [11,14]
requires that the various processes be convertedciremical equations which are later converted ditferential
equations. One obvious limitation is that the ODEthod does not account for spatial aspects. Diaon of
monomer proteins, dissociation of dimers, reprebsuding to Operator regions, and RNA polymeraswelinig to
Promoter regions are all processes in which théad@spects of the DNA play a crucial role. Thdsgails are not
modeled in the ODE and approach. Agent-based maaelsunt for these spatial and temporal aspecthande
can be closer to actual biological processes. Werosimplification in ODEs is that the protein nmlées are
modeled as concentrations and the actual reacisnshange of these concentrations with time. Tédsld to
modeling the system in a structured and programmadner where reactions happen in sequence (ag IOEE
approach) at a given rate. However, actual bioklgiwocesses happen concurrently and the ratediahwhese
processes proceed may be affected by many faetbod,which are not modeled by the ODE approach.

Stochastic simulations also do not usually take atcount the spatial aspects of the simulationmany
stochastic simulations, reactions also proceed esgiglly, although in a random order. In additi@ochastic
simulations may not incorporate geometric inforimati With an agent-based approach, many processds wo
concurrently and hence complex and often unprdalietachaviors can be observed.

1.3. Issueswith ABM

Modeling a system with bottom-up approach requihas every individual agent’s behavior be desatibe
The greater the number of details that go into ideisg) the behavior of the system, the greatehésdomputational
power that is required to simulate the behavioralbftonstituent agents. This is a limitation in deting large
systems using ABM. [9]. A reasonable approach iprtivide several levels of abstraction and graitylawhich
can be chosen depending on the level of detail ete@shd the computational resources available. Merere
modeling reactions at the molecular level, for ktreely small number of molecules, so we have ehoa very
fine-grained level of modeling.

The objective of simulating a system is usuallyptedict the outputs at untried inputs or to optiEn&
function of the input parameters. ABM models carmoteither. Rather, a more relevant analysis usiBiy! is to
study the system, search for insights and get & baslerstanding of the agent-based model. Thghtsithat we
can hope to get are in identifying the importanttdas and their interactions, as well as their @ffeand the
locations, thresholds and ranges where interesgtimgs like fluctuations can occur [4]. ABM modelan also be
combined with heuristic techniques which searctpBmameter values to optimize a desired behaéi. [

1.4. Unified Modeling Language (UML) and ABM
The Unified Modeling Language (UML) is a widely-asgraphical language for describing overall system
design. It includes structures for describing vidtlial classes (class diagram), related classes dERnNtity-
relationship diagram), and system and object s{ét22]. Dinsoreanu et al [18] have presented thouplogy for
designing the agent-based systems and models sgdré@s UML notation. The methodology has the follny
steps:
1. Specification of functionality: The functionalityf the system is expressed in terms of the variaskst of
the agents.
2. Designing the organizational model: Agents constituthe system, their respective tasks and rudias t
need to be followed by each of them are identified.
3. Defining the interaction model: The communicationtpcols between the agents are defined.
4. Designing the environment model: The environmentliich the agents operate and interact is defined.



Webb and White [19] have modeled and simulatedytpeolic pathway within the cytoplasm and the TCA
cycle that takes place within the mitochondrial nxatising the CellAK approach. The system is decosegl into
an inheritance hierarchy of classes and a contaihimerarchy of actors using UML class diagramsctEactor,
also called a capsule, possesses a state diagrazh mbdels the reactivity of the actors to realdievents and
internally-generated timeouts. The model was vadidagainst Gepasi [23].

Cannata et al [20] proposed the Multi Agent Sys{®AS) approach to effectively model a biological
system using mediating artifacts which enable agenengage in different types of interactions. @pproach has
the advantage that it can provide the right levielabstraction to model a biological system. For udating
biological systems, they propose models which allevio analyze the system for different view pqines,

1. static-structural view with a bio-molecular kredge of components, their properties and their

relationships.

2. dynamic view which shows how the componentstreEaenvironment and other agents over a period of

time.

3. functional view which shows how the functiome performed by the different agents.

15. BREVE

Many simulators were studied for ease of use amdability for our purpose of simulating decentrakd
behaviors.There are a few popular packages for simulatiordedentralized systems which provide for 2D
visualization. Swarm [15] and StarLogo [16] are sowmfi the popular packages commonly used for agemaiors
but, compared to BREVE, they do not provide for §Bwlations or visualizations. On the other hamhere are
some commercial simulators like the one describdd 7] which provide for 3D graphics and physiciahglations
but which are quite costly.

BREVE [1] is a 3D simulation engine developed tovide quick and easy simulations of decentralized
systems. It is an open-source package availableldarOS, Linux and Windows platforms. It allows tssto define
and visualize decentralized agent behaviors inioots time and continuous 3D space. The packagesavith
its own interpreted object-oriented scripting laage calledsteve, an OpenGL display engine and collision
detection. BREVE also has a library of built-imsdes and provides for graphical 3D visualizatioth eollisions
between 3D bodies. These features remove a signifiemount of programming overhead. A special esipha
placed on simulating lower-level interactions id@rto evolve highly realistic macroscopic behasior

2. System to Be Studied
Escherichia coli. coli) is an intestinal bacterium and is a commonly isiighrototype for bacteria. When
it is exposed to a dose of ultraviolet light, ibss$ reproducing and starts to produce a crop obes called phage
lambda into the culture medium. This process oidrapproduction of the phage lambda viruses iseddlisis. The
newly-formed lambda phages multiply by infectingsih bacteria. Some of the infected bacteria lygbducausing
more phages to be produced whereas some bacteyizang the phage in a passive form causing théebacto
grow and divide normally. This process of passeroduction of the phage lambda is callgsbgeny.
This switching of the virus between two states, frem the passive form or lysogeny to the acédaorm
or lysis is similar to the ON and OFF states ofdhgtal inverter. Jacob and Monod [25] showed this switching
is a basic example for the turning on and off aigge Thus an accurate model of the lysis and Bspgrocesses
in E. coli is of interest in itself and can also form the bdsi modeling more complex processes in otherrosgas.
The two states are described more completely by:
Lysogenic state: Only a single phage chromosome is turned omgrdwvs and replicates passively, as part
of the E.coli bacterium. However, when irradiated with ultragiolight, almost every lysogen in the
bacterium enters the lytic state.
Lytic state: Various sets of phage genes turn on and off iegalated manner. Consequently, the lambda
chromosome is extensively reproduced and 45 mirlates the bacterium lyses and releases new phage.
[10]

2.1. Gene Expression

Genes which are expressed are said torbehereas those not expressed are said twfb&he expression
of the genes is regulated. The regulation of geaaeshe easily visualized in the switching of thagshlambda from
the lysogenic to the lytic state.

Transcription is the first step in gene expressidhe sequence of base pairs along one of the geamads
is copied into a linear molecule called RNA. A gémsaid to be turneoh if it is being copied into RNA anoff it is
not. There are various kinds of RNA molecules, sofnehich are end products, while others are megseRNAS



(mRNASs) which specify the designs of proteins. Geaee transcribed into mRNA by an enzyme called RNA
polymerase.

The process begins with the RNA polymerase bintling site on the gene called promoter. The promote
is a region of the gene extending over 60 bases.péie consider two promoters, Pr and Prm in ourehoffter
binding, RNA polymerase travels away from the prteneegion along the gene, synthesizing mRNA asaves,
resulting in unwinding regions of DNA. This unwousdquence then forms the template for the complemen
mMRNA strand. Figure 1 shows a segment of DNA whthdirections of the two promoters indicated.

Prm Pr
e ——  ———
cl transcript cro transcript

Figure 1. Basic structure of the phage lambda DNA

RNA polymerase can be helped or prevented in itsg®s of transcription of the gene by tlegulatory
proteins that bind to specific sites on the DNA calleplerators. In Figure 1, three operator sites, Orl, Or2, and
Or3, are shown. A negative regulator protein pmévdranscription whereas a positive regulator ginogids
transcription Repressor or Rp is a protein of 236 amino acids which fold into tdistinct domains called the amino
and carboxyl domains. Figure 2 shows the formatiban Rp dimmer, as depicted in our system.. Twpr&ssor
monomers associate to form Repressor dimers. TheeRsor domains use their amino domains to birldNg. at

an operator site. [10]
8 %

Figure 2. Rp monomer collides with another Rp moeota form an Rp dimer

Cro is a protein made up of 66 amino acids folded am&ingle domain. Cro monomers have high affinity
for each other and hence form a dimer. A Cro dibirds to the operator sites on the DNA. Figurash8ws the
formation of a Cro dimmer, as depicted in our gyste
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Figure 3.Cro monomer collides with another Cro mmaoto form a Cro dmer

Operators are specific sites on the DNA molecul&elwimay vary in the strength with which they biine t
protein. There are three operator sites, OR1, QRRGR3 which are relevant to our model of the lamptage.
Each of these operator sites vary in their affifityRp and Cro. They are depicted in Figure 1vabo



2.2. Lysogeny

Repressor dimers have higher affinity for OR1 aadde bind to it first. If OR1 is filled, OR2’s afity is
increased. Hence in the presence of high concemisabf the Repressor dimer, OR2 is filled almastuttaneously
with OR1. Thus binding of Repressor to operatoigperative. When a Repressor binds to site @Rayers the
part of the DNA which is necessary for the polynserdo bind to PR. Thus, it prevents RNA polymertieen
binding to the Cro gene and turns it off. Consedlyeii helps polymerase to bind and begin trangan of the cl
gene in a lysogen. Thus, repressor exerts botltiyand negative control. this is shown in Frydr

Prm Pr
Or3 Orz Orl

Pr
Or3 Qr2 Or1

Prm Pr

Or3 Or2 or1

Figure 4. Repressor action

2.3. Lysis

Repressor at OR1 and OR2 together, keeps difr@and stimulates transcription of its own gene, cl.
Repressor is synthesized continuously as longlesgrew and divide. If Repressor concentratiorré@ases, it binds
to OR3 and turns its own gewo#, thus preventing further synthesis of repressoicethe repressor concentration
falls down to a level such that OR3 is empty, tlekigene is turned on and normal synthesis continlibes a
constant Repressor concentration is maintaineghjtgeffuctuations in the growth rate.

To change the state of the switch, ultraviolet (Uit is applied. UV light leads to a significagttange in
the behavior of a bacterial protein called RecAstagi it to cleavé. Repressor monomers. The cleavage effectively
inactivates Repressors since they are no longertaldimerize and the monomeric forms have lownaffifor the
operator. As a result, there are few dimers toaapthe ones which fall off the operator sites. Répressor dimers
fall off OR1 and OR2, the synthesis of Repressostipped. Hence no further Repressor to bind toethpty
operator sites is available. Consequently, Polysgebends to PR to begin transcription of the Crnoege

Cro dimers bind non-cooperatively to the operaitss The affinity of Cro for the three operataiesiis
opposite to that of the Repressor. Hence, if addmer approaches the operator sites, all of whieheanpty, then
Cro binds to ORS3. This prevents binding of Polyrserto PRM and abolishes further synthesis of Represt this
point, the switch is said to be flipped and lytiowth continues. As PR is turned on and Cro isstebed, more
Cro is synthesized until it fills OR1 and OR2. mamary, Cro first stops Repressor synthesis am afime time
turns off its own gene. This is depicted in Fighre
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Figure 5. Cro action

The phage lambda virus has one of the simplesé gegulatory systems which shows an interesting
phenomenon analogous to a switch (from lysogenigtio state and vice versa), when injected iBt@oli bacteria.
The various processes that go into the gene triptiscr, such as Repressor dimerization, dissoaiatéind decay,
and translation, are modeled in our system alorh spatial aspects like the promoter and operagions of the
DNA. The detailed biological mechanisms and nomegnce can be found in [10].

Tsui has developed an agent-based model of tmbda switch. Her paper shows that agent-based
modeling is an effective approach for studying gesgulatory systems at the molecular level. Ourkwisran
extension of her work [2]. Much work has been donghage lambda using the differential and stoahasbdels.
See, for example [11], [12], [13] and [14]. We wblike to study such factors as space, concenfraif proteins
and the molecular-level dynamics which influence Wtic and lysogenic process of a phage lambdeesysand
compare the qualitative and quantitative resultsires those predicted by models based on ordindfgrehtial
equations or stochastic simulation.

3. Modeling Specifics

We have modeled a basic phage lambda DNA struahuoleprotein behaviors based on Ptashne’s extensive
work on the phage lambda virus and have followednlotations of names and structure [10]. The reastshown
in figure 6 [14] have been modeled using the afpaised approach.

3.1. Agent Rules
BREVE, the language we will use, provides for inHbclasses of the type Mobile and Stationary, both
derived from a base class, Object. Agents of typpr&sor, Cro, RecA, and RNA polymerase (RNA Palg)
modeled as agents of type Mobile. Each of thesatadeas an identification, shape, color, velocitg difetime.
Some of the local agent rules are:
» Repressor, Cro, RecA, RNA poly are initialized asnomers.
*  All mobile molecules can move in a fixed volumeward the DNA..
« All mobile molecules have random motion with a @xequal velocity.
« All molecule agents haveldetime for which they would be present in the environment
A monomer (Repressor or Cro) will form a dimer upaotlision with another monomer.
* A dimer (Repressor or Cro) will dissociate into @snstituent monomers after a certain period oktim
within its lifetime.
» Agents decay after their lifetime has ended.
* RecA on colliding with a Repressor monomer caustsbe incapable of forming a dimer.
» Dimer agents (Repressor and Cro) sense the affamitly distance to operator sites. If any of the aioer
sites are not filled, they attach to the approprsate. Else, they continue to move randomly.
« Promoter agents sense the status of the opertgsragid accordingly set their own states.



 RNA Polymerase agent senses the status of the peesndf one of them is turned on, then it bindstto
and starts synthesizing either Repressor or Cribiurgaches the end of the gene sequence.
The Controller class, which is analogous to thenf)atlass in the C++ language, is responsible for
initializing all the agents, monitoring their bel@vand updating the global behavior of the systéndoes not
however centrally control the system and thus plesifor local agent behaviors to evolve over time.

Ro+Rp O (9TER0) _, o,
Rp, 0 (8RR, o+ Ro
Cro+Cro U kﬁ"mcﬂﬁ]) - Cro,

Cro, O %n@(ﬁﬂ) — Cro+Cro
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PrRp, © G Rp,
Pr + Rp, [] P PrRp,
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Figure 6. The reactions comprising the phage lansidih

3.2. UML Description
For our system we have used the UML constructs clattity-relationship diagram, and state diagram.

3.2.1. Classand Entity-Relationship Diagrams

Classis a template for a set of objects that sharenanoon set of attributes and operations. Figure @giv
an example of a class. The first section specifiesname of the class. The second section spgdife attributes
of the class. For example, type is an attributéhefclass RpMonomer. The third section specifiesdperations
performed by the class. For exampteget-type is an operation performed by the RpMonomer classctess the

type attribute In our system each class corresponds to a typgesftaThe complete set of classes we have used is
given in Figure 8.

RpMonomer

Hype

HisMonomer

-direction

-maxDistance

-RpMonomerTime

+to init)

+to post-iteratel)

+to get-type()

+to get-isMonomer}

+o set-isMonomer to isMonomervaluel)

Figure 7. Example class--RpMonomer
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Figure 8. The class diagrams of agents in the syste




Entity-relationship or ER diagram shows the relationships and interfaces betweesatasThe ER diagram for the
phage-lambda switch mechanism is shown in Figur&%.9In Figure 9, the legends for the three bagies of
realationships are giveris-a relationship between classes indicates inheritance of attribamelsoperations by the
class in the lower-level hierarchy of the one abibvin Figure 10 0Operator andPromoter are classes which both
inherit the properties of the claBNARegion. Has-a relationship indicates that the class is a composition of
class(es). In Figure 1RpMonomer is a class which is a component of CIBpBimer. All other relationships in the
ER diagrams are of the generic type "uses".

[ ] Class
D [5=a relatiosnhip

Has-a relationship

—*

Figure 9. Legend for class diagram notations

BindingSite

£
cl | | Promoter | I Operator | | cir
AN AN
| Pr | | Prm | | Orl | I Or2 | | O3 |
4 4 [ [

Figure 10. ER diagram for system’s stationary disjec
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Figure 11. ER diagram for system’s mobile objects

The agent-based approach allows us to view the sfahe system from multiple points of view. THeage lambda
system after initialization with enough repressameentration goes into the lysogenic state. Itiooes to be in the
same state until UV light is applied. It then ga@s the lytic state.

3.2.2. System State Diagrams

The agent-based approach allows us to view the sfahe system from multiple points of view. The
phage lambda system after initialization with erftotgpressor concentration goes into the lysogeaate.dt
continues to be in the same state until UV lighapsglied. It then goes into the lytic state. Tikishown in Figure
12. The Rp and Cro Dimer agents after being iiitid are in a state of random motion. Howevethdfy sense that
the operator sites are empty, then they bind topgagicular site(s). This is shown in Figure 13.

Uitraviolet light

Figure 12. State machine representing the systatmsst
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Figure 13. State machine representing the statadRefpressor dimer agent

4. Results

We have modeled the phage lambda system as deifinééML. Some example snapshots of the
simulation are shown in Figures 14 and 15. Inehigures the light purple region represents thenputer, Pr
(right) and the light brown region is the Prm (Jefthe dark blue regions are the Operators, Or2, &nd Or3 (right
to left). The small red spheres are the Rp monaagents whereas the large red spheres are the Ry dgents.
The blue spheres represent Cro, the larger oneg leé Cro dimer and the smaller ones being then@moomer
agents. The black spheres are the RecA agenthampdy spheres represent the cleaved Repressonmon

Figure 14. DNA and Repressor as simulated in Breve
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Figure 15. Cro and RecA in action
4.1. Breve Simulation Results
Some details of our program, written in BREVE's/etlanguage are given here.

* RPMONOMER_COUNT and RECA_COUNT represent the intiaimber of molecules of repressor
monomer and RecA monomers, respectively, useckisithulation.

e« RECA_INIT_TIME is the time after start of simulatidghat RecA monomers are initialized (applying UV
light).

* RPMONOMER_LIFETIME, CROMONOMER_LIFETIME, RECAMONOME_LIFETIME,
RPDIMER_LIFETIME, CRODIMER_LIFETIME are the totahte for which each of the molecule agents
are active in the simulation.

+ RPMONOMER_VEL, CROMONOMER_VEL, RNA_VEL, RECA_VEL,PDIMER_VEL,
CRODIMER_VEL are the velocities of the molecule aige

* RP_TO_OR1 TIME, RP_TO_OR2_TIME, RP_TO_OR3_TIME #re times for which the repressor are
bound to the operator sites.

e« CRO_TO OR1 TIME, CRO TO OR2 TIME, CRO _TO_ ORMEI are the times for which the Cro
agents are bound to the operator sites.

Table 1 gives the values of the parameters usttkeibasic simulation. The graph for these valusfidsvn
in Figure 16(a). The initial concentration of Reggor monomers is 20. As the simulation procedus, t
concentration of Repressor falls down graduallypeemlly after t = 15 seconds when RecA is initiedl. The
concentration of Cro is found to increase gradudigreatfter.

We also did a series of experiments to study thecef of changes in the various parameters. Weeptes
some examples here.

» Figure 16(b) shows the effect of increase in ihiRapressor concentration, we increased it to & be
seen that Cro was synthesized only after 20 secasdgyainst 17.5 seconds in Figure 16(a). Theofate
Repressor decay is much slower than in the formse.c

» Figure 16(c) shows the effect of decreasing iniRalpressor amount to 15 molecules The effect of the
change is the rapid synthesis of Cro.

» Figure 16(d) shows the effect of modifying the Reirftialization time to 10 seconds instead of 15
seconds. We observe that Cro starts being prodaftedjust 12 seconds.

» Figure 16(e) shows the effect of decreasing thediitife of the Repressor dimer to 4 seconds. Decrgasi
the lifetime of a Repressor dimer effectively regsithe time it is bound to the operator site. Hettoe
amounts of both Rp and Cro are prone to fluctuate.

» Figure 16(f) shows the effect of increasing theesnthat the Repressor is bound to the operate. gikea
result, the synthesis of Repressor takes placa fonger time than is the case in 16(a). So, fershme
amount of RecA molecules, with the same velocitietgkes a longer time to empty OR1 and OR2 and
hence Cro is not synthesized at a faster rate.



RPMONOMER_COUNT 20
RECA_COUNT 50
RECA_INIT_TIME 15

RPMONOMER_LIFETIME 20
CROMONOMER_LIFETIME 20
RECAMONOMER_LIFETIME 60

RP_TO_OR1_TIME 1
RP_TO_OR2_TIME 2
RP_TO_OR3_TIME 3
RPDIMER_LIFETIME 7

CRO_TO_OR1_TIME 3
CRO_TO_OR2_TIME 2
CRO_TO_OR3_TIME 1
CRODIMER_LIFETIME 7

RPDIMER_VEL 20
RECA_VEL 60

CRODIMER_VEL 20
RPMONOMER_VEL 40
CROMONOMER_VEL 20
RNA_VEL 5

Table 1. The base parameter values for simulatidheophage lambda system

4.2. Comparison to ODE and Stochastic Simulation Results

Krishnan and Purdyl [11] have simulated some ofghage lambda system equations of Figure 6. Their
results are shown in figure 17. As can be seeraridnitial 1uM repressor concentration, the conicion of Cro
in the absence of Rp was found to be 0.2uM.

At the system level, the kinetics of a reactiordetermined by the reaction rate constant and velati
concentrations of the reactants. At the molecwdaell however, the kinetics is a function of thelability of
collisions between individual molecules of the jgphting reactants, per unit time [21]. They alsoanfluenced
by the reactants’ initial concentrations as welttasr respective affinities. Khan et al [21] ha&timated relative
reaction times in terms of the relative rate camist#o be

vi_ Kkl Uv2 _1/k2

v k2 O v 1wk

where v1 and v2 are the velocities and k1 and &Zts kinetic constants of two reactions 1 and Rlvhave equal
initial concentrations of reactants. The reactioretthus obtained is scaled against the reactiagohnh the slowest,
having the least rate constant among a set ofioaact

For our calculations, we have calculated the comatons of each agent molecule using the formula
N/A

\%
where C is the concentration of molecules of a mitype, N is the number of molecules of that tyfeis the
Avogadro number (6.023 x 3 of molecules in a mole and V is the volume withinhich these reactions occur. In
our BREVE simulation, we have modeled the DNA gt in terms of the base pairs as obtained frabh [As a
result, the volume was found to be approximatel\s& 10™ liters.



——Cro Conc
——Cro Conc.|
20 25 4
20 +
15
15 4
10
10 4
5
/_N’\\_ *1
& & P PP PP PP R L PP P PP
o F P F P ¥ @9" PRI @9" oo o &9" & 10 15 20 25 30 35 40 45
-5 5
(a) Simulation with values of Table 1 ®pMonomer_Count = 25
25 —Rp Conc 30 —Rp Conc
——Cro Conc Cro Conc
20 4 25 A
20 4
15 4
15 4
10 A
10 4
51
Falham )
0 T T T T T o
10 0 % “ 50 ki 10 15 20 25 30 35
5 -5
(c) RpMonomer_Count = 15 (d)RpMonomer_Count = 15 &etA_Init_Time = 10 seconds
20 25
18 4
16 4 20 4
14 4
15 4
12 A
101 ——Rp Conc 101 ——Rp Conc
8 4 ——Cro Conc ——Cro Conc
61
51
2]
21 0 . A
o N ‘ 20 30 40 50 60 7
10 20 30 40 50 60
2 5

(e) RpDimer_Lifetime = 4 sads

(f)Rp_to_Or1=2,Rp_to_Or2=2

Figure 16. Agent-based modeling and simulationp#R Cro, examples cases



a) Dynamic characterisics of the bio-inverter (MATLAB)
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Figure 17. ODE modeling and simulation of Rp vs td]

Krishnan and Purdy [24] have also simulated thelgistic modeling of the phage lambda system and hav
obtained the result shown in Figure 18.
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1] 200 400 600 800 1000 1200 1400 1500
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Figure 18. Stochastic modeling and simulation ofvR[Cro [24]

In order to compare our result with those of Figl® we have scaled our system with the same input
concentrations for Rp and RNA polymerase [24]. Taéte constants of Figure 6, as obtained from [W@}e also
modeled such that all reactions were scaled agtiastlowest reaction among the set of reacti®igh the kinetic
constants scaled as the ones in [14] and [24]{f@andame input concentrations as in [24], we ilim@aRecA agents
after just 0.5 seconds of simulation time (Figu8d.1 For this simulation, we use the parameteveslgiven in
Table 2. We see that the general shape of theesurem 0-50 seconds in Figures 18 and 19 seerns similar.

But there are several factors which differ in th tsimulation models, and we are still experimentimith the
correct values for each model, so we are not ykt sthcompare the two models in enough detail tierdane
definitively how well they match.



——Rp Conc.
——Cro Conc.
50
40
¢ 304
S
(S
9
[} |
g 20
S
e}
Z 104
0 T T
D 10 20 30 40 50
-10
Time (in secs)

Figure 19. Simulation using parameterR4f and agent-based modeling

RPMONOMER_COUNT 50
RECA_COUNT 100
RECA_INIT_TIME 0.5

RPMONOMER_LIFETIME 20
CROMONOMER_LIFETIME 50
RECAMONOMER_LIFETIME 60

RP_TO_OR1_TIME 1
RP_TO_OR2_TIME 2
RP_TO_OR3_TIME 3
RPDIMER_LIFETIME 5
CRO_TO_OR1_TIME 3
CRO_TO_OR2_TIME 2
CRO_TO_OR3_TIME 1
CRODIMER_LIFETIME 5
RPDIMER_VEL 20
RECA_VEL 60
CRODIMER_VEL 20
RPMONOMER_VEL 5
CROMONOMER_VEL 20
RNA_VEL 5

Table 2. The parameter values for simulation ofgehlambda system for comparison with [24]

5. Conclusionsand Future Work

In modeling biological processes, we felt it wasessary to incorporate the spatial and temporgleties
of the molecules and the gene to provide for a nareurate model of the system. Hence, we modeled an
simulated the gene expression of the phage lamioda wsing the ABM paradigm. The behavior of theegeand
the regulatory proteins has been modeled for tHiewnsional visualization using BREVE.

Comparing our work to [11], we find that our agbaised approach has the advantage of visualizing and
understanding the system at the molecular levelirBluding the knowledge of actual kinetics at thelecular
level, the accuracy of the model can be improvedicantly. Secondly, as we can see from the gsaple can



observe the functioning of the system in the presef random fluctuations in the expression of gerdso, the
effect of varying various parameters like conceitrs and velocities can be observed and studied.nt@del was
found to be easy to scale in terms of the bothtimaparameters and the level of detail. Hence anticipate that
the phage lambda system can be modeled to inclatiled description of the gene structure and hiehsof
molecule agents. The model could also be portea parallel environment for the simulation of maa@mplex
systems.
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