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Abstract  

We present an agent-based, three-dimensional model of phage lambda, a virus infecting E. coli which exhibits two phases, lysogenic 
and lytic.  This process is useful for bio-based sensors or switches and is a widely studied gene regulatory system.  We model system constituents 
as software agents.  Complex system behavior emerges from local agent interactions. Agent based modeling lets us study how individual 
parameters affect overall system behavior. This bottom-up approach is an alternative to top-down approaches using differential equations and 
stochastic simulation.  It can model any system of biomolecular reactions, with applications in physiology, pharmacology, medicine, 
environmental monitoring and homeland security.  

 
1.  Introduction 

Traditionally, biomolecular reactions have been studied and analyzed using ordinary differential equations 
(ODE) or stochastic simulation. The ODE model has been employed extensively for modeling systems with either a 
few or a moderate number of factors in which effects of interest tend to be sparse and linear or of low-order.  In 
these systems higher-order interactions are typically negligible and errors are normally distributed [4].  Noise is 
typically aggregated into one term [9].  Stochastic models are effective for systems with a large number of 
components, with each component having simple interactions and few states. However, certain systems, such as 
biological cells, have a significant number of components whose interactions are complex [3]. The main objective of 
this work is to model and simulate a gene regulatory system and its constituent reactions using agent-based 
modeling (ABM) and to compare this approach against the traditional approaches. We have modeled our system 
using the Unified Modeling Language (UML) and simulated it using a 3D visualization engine, BREVE. [1] 

 
1.1.  Agent Based Modeling (ABM) 

Most biological systems are complex in nature. A complex system has many of its components coupled in a 
non-linear fashion. The variables in a complex system can exhibit complicated, discontinuous behaviors over time.  
Most complex systems exhibit the emergence property, i.e., the formation of complex patterns from simpler 
interaction rules. Thus the global behavior of the system can be determined by defining the lower-level interaction 
rules among the components [5]. One such complex biological system is the gene regulatory system of the phage 
lambda virus injected into an E. coli cell, which we model here. 

Developing software for agent-based systems can make use of many modern software engineering 
techniques, including decomposition, or dividing a problem into small, manageable parts, abstraction, or choosing 
which details of a problem to model and which to suppress, and organization, or identifying and managing the 
relationships among the various system components [6,7].  The agent-based model is a bottom-up paradigm wherein 
the lowest level entities, called agents, interact with each other autonomously. 

An agent is an encapsulated computer system that is situated in some environment and that is capable of 
flexible, autonomous action in that environment in order to meet its design objectives [7].  The idea is to construct 
the model using agents and to simulate the interactions of those agents in parallel to model the real phenomena on a 
system level. The agents are situated in space and time and have some properties and certain sets of local interaction 
rules. Though intelligent, they cannot by themselves deduce the global behavior resulting from their dynamic 
interactions. Thus the system is found to evolve from the micro level to the macro level. Thus agent-based modeling 
uses a bottom-up design strategy rather than a top-down strategy.  Agents are commonly assumed to have well-
defined bounds and interfaces, as well as spatial and temporal properties, including such dynamic properties as 
movement, velocity, acceleration, and collision.  They exist in an environment which they sense and can 
communicate with through their interfaces.  They are assumed to respond in a timely manner to changes in their 
environment.  They are autonomous, encapsulating a state and changing state based on their current state and 
information they receive. [7,9] 

In agent based modeling the problem is decomposed so that the agents are equipped with knowledge to 
solve the problem. As a result, the control complexity is reduced due to the decentralization achieved by 
decomposition. An agent-based approach helps us to study the emergence of complexity of the system, in that the 
scale and effect of various parts on the global behavior and vice-versa can be studied in greater detail and with much 
more accuracy.  Thus, in contrast to systems based on differential equations, an agent-based system may possess 



many factors, may exhibit non-linear and even non-polynomial behavior, may have many higher-order interactions, 
may have a variety of possible errors, with differing distributions, and may provide many different types of 
performance measures. [4]  

One important benefit of agent-based systems is that they can exhibit emergent behavior, or higher-level 
behavior which is a consequence of individual agent interactions.  It is often said that "the sum of the parts of an 
ABM is greater than the whole". [9]  Agent-based systems also allow for easy modification of interaction rules or 
behavior, as well as for viewing agents or groups of agents at different levels of abstraction, as appropriate.  Agent-
based systems also allow for the study of system fluctuations, especially those in which a small change in a variable 
or a discontinuity can have extreme consequences on the system as a whole. [9] 

 
1.2.  Comparison of ODE and Stochastic Simulation Approaches to the Agent Based Model 
 Modeling the phage lambda gene regulatory system using differential equations approach as in [11,14] 
requires that the various processes be converted into chemical equations which are later converted into differential 
equations.  One obvious limitation is that the ODE method does not account for spatial aspects. Dimerization of 
monomer proteins, dissociation of dimers, repressor binding to Operator regions, and RNA polymerase binding to 
Promoter regions are all processes in which the spatial aspects of the DNA play a crucial role. These details are not 
modeled in the ODE and approach. Agent-based models account for these spatial and temporal aspects and hence 
can be closer to actual biological processes.  Another simplification in ODEs is that the protein molecules are 
modeled as concentrations and the actual reactions as change of these concentrations with time. This leads to 
modeling the system in a structured and programmed manner where reactions happen in sequence (as in the ODE 
approach) at a given rate. However, actual biological processes happen concurrently and the rates at which these 
processes proceed may be affected by many factors, all of which are not modeled by the ODE approach. 

Stochastic simulations also do not usually take into account the spatial aspects of the simulation.  In many 
stochastic simulations, reactions also proceed sequentially, although in a random order. In addition, stochastic 
simulations may not incorporate geometric information. With an agent-based approach, many processes work 
concurrently and hence complex and often unpredictable behaviors can be observed. 
 
1.3.  Issues with ABM 
 Modeling a system with bottom-up approach requires that every individual agent’s behavior be described. 
The greater the number of details that go into describing the behavior of the system, the greater is the computational 
power that is required to simulate the behaviors of all constituent agents. This is a limitation in modeling large 
systems using ABM. [9]. A reasonable approach is to provide several levels of abstraction and granularity, which 
can be chosen depending on the level of detail needed and the computational resources available.  Here we are 
modeling reactions at the molecular level, for a relatively small number of molecules, so we have chosen a very 
fine-grained level of modeling.   

The objective of simulating a system is usually to predict the outputs at untried inputs or to optimize a 
function of the input parameters. ABM models cannot do either. Rather, a more relevant analysis using ABM is to 
study the system, search for insights and get a basic understanding of the agent-based model. The insights that we 
can hope to get are in identifying the important factors and their interactions, as well as their effects, and the 
locations, thresholds and ranges where interesting things like fluctuations can occur [4].  ABM models can also be 
combined with heuristic techniques which search for parameter values to optimize a desired behavior. [26]   
 
1.4.  Unified Modeling Language (UML) and ABM 

The Unified Modeling Language (UML) is a widely-used graphical language for describing overall system 
design.  It includes structures for describing individual classes (class diagram), related classes (ER or entity-
relationship diagram), and system and object states [6,22].  Dinsoreanu et al [18] have presented a methodology for 
designing the agent-based systems and models expressed in UML  notation. The methodology has the following 
steps: 

1. Specification of functionality: The functionality of the system is expressed in terms of the various tasks of 
the agents. 

2. Designing the organizational model: Agents constituting the system, their respective tasks and rules that 
need to be followed by each of them are identified.  

3. Defining the interaction model: The communication protocols between the agents are defined. 
4. Designing the environment model: The environment in which the agents operate and interact is defined.  

 



Webb and White [19] have modeled and simulated the glycolic pathway within the cytoplasm and the TCA 
cycle that takes place within the mitochondrial matrix using the CellAK approach. The system is decomposed into 
an inheritance hierarchy of classes and a containment hierarchy of actors using UML class diagrams. Each actor, 
also called a capsule, possesses a state diagram which models the reactivity of the actors to real-time events and 
internally-generated timeouts. The model was validated against Gepasi [23]. 

Cannata et al  [20] proposed the Multi Agent System (MAS) approach to effectively model a biological 
system using mediating artifacts which enable agents to engage in different types of interactions. The approach has 
the advantage that it can provide the right level of abstraction to model a biological system. For simulating 
biological systems, they propose models which allow us to analyze the system for different view points, i.e., 

1. static-structural view with a bio-molecular knowledge of components, their properties and their 
relationships. 
2.  dynamic view which shows how the components react to environment and other agents over a period of 
time. 
3.  functional view which shows how the functions are performed by the different agents. 

 
1.5.  BREVE 
 Many simulators were studied for ease of use and availability for our purpose of simulating decentralized 
behaviors. There are a few popular packages for simulation of decentralized systems which provide for 2D 
visualization. Swarm [15] and StarLogo [16] are some of the popular packages commonly used for agent behaviors 
but, compared to BREVE, they do not provide for 3D simulations or visualizations. On the other hand, there are 
some commercial simulators like the one described in [17] which provide for 3D graphics and physical simulations 
but which are quite costly. 
 BREVE [1] is a 3D simulation engine developed to provide quick and easy simulations of decentralized 
systems. It is an open-source package available for Mac OS, Linux and Windows platforms. It allows users to define 
and visualize decentralized agent behaviors in continuous time and continuous 3D space. The package comes with 
its own interpreted object-oriented scripting language called steve, an OpenGL display engine and collision 
detection.  BREVE also has a library of built-in classes and provides for graphical 3D visualization and collisions 
between 3D bodies. These features remove a significant amount of programming overhead. A special emphasis is 
placed on simulating lower-level interactions in order to evolve highly realistic macroscopic behaviors.  
 
2.  System to Be Studied 

Escherichia coli (E. coli) is an intestinal bacterium and is a commonly studied prototype for bacteria. When 
it is exposed to a dose of ultraviolet light, it stops reproducing and starts to produce a crop of viruses called phage 
lambda into the culture medium. This process of rapid reproduction of the phage lambda viruses is called lysis. The 
newly-formed lambda phages multiply by infecting fresh bacteria. Some of the infected bacteria lyse further causing 
more phages to be produced whereas some bacteria may carry the phage in a passive form causing the bacteria to 
grow and divide normally. This process of passive reproduction of the phage lambda is called lysogeny.  

This switching of the virus between two states, i.e., from the passive form or lysogeny to the activated form 
or lysis is similar to the ON and OFF states of the digital inverter.  Jacob and Monod [25] showed that this switching 
is a basic example for the turning on and off of genes.  Thus an accurate model of the lysis and lysogeny processes 
in E. coli is of interest in itself and can also form the basis for modeling more complex processes in other organisms.  
The two states are described more completely by: 

Lysogenic state:  Only a single phage chromosome is turned on.  It grows and replicates passively, as part 
of the E.coli bacterium. However, when irradiated with ultraviolet light, almost every lysogen in the 
bacterium enters the lytic state. 
Lytic state: Various sets of phage genes turn on and off in a regulated manner. Consequently, the lambda 
chromosome is extensively reproduced and 45 minutes later the bacterium lyses and releases new phage. 
[10] 

 
2.1.  Gene Expression 

Genes which are expressed are said to be on whereas those not expressed are said to be off. The expression 
of the genes is regulated. The regulation of genes can be easily visualized in the switching of the phage lambda from 
the lysogenic to the lytic state. 
 Transcription is the first step in gene expression.  The sequence of base pairs along one of the gene strands 
is copied into a linear molecule called RNA. A gene is said to be turned on if it is being copied into RNA and off it is 
not. There are various kinds of RNA molecules, some of which are end products, while others are messenger RNAs 



(mRNAs) which specify the designs of proteins. Genes are transcribed into mRNA by an enzyme called RNA 
polymerase. 

 The process begins with the RNA polymerase binding to a site on the gene called promoter. The promoter 
is a region of the gene extending over 60 base pairs. We consider two promoters, Pr and Prm in our model. After 
binding, RNA polymerase travels away from the promoter region along the gene, synthesizing mRNA as it moves, 
resulting in unwinding regions of DNA. This unwound sequence then forms the template for the complementary 
mRNA strand.  Figure 1 shows a segment of DNA with the directions of the two promoters indicated.   
 
 

 
 

Figure 1. Basic structure of the phage lambda DNA 
 

RNA polymerase can be helped or prevented in its process of transcription of the gene by the regulatory 
proteins that bind to specific sites on the DNA called operators.  In Figure 1, three operator sites, Or1, Or2, and 
Or3, are shown.  A negative regulator protein prevents transcription whereas a positive regulator protein aids 
transcription. Repressor or Rp is a protein of 236 amino acids which fold into two distinct domains called the amino 
and carboxyl domains. Figure 2 shows the formation of an Rp dimmer, as depicted in our system.. Two Repressor 
monomers associate to form Repressor dimers. The Repressor domains use their amino domains to bind to DNA at 
an operator site. [10] 
 

 
 

Figure 2. Rp monomer collides with another Rp monomer to form an Rp dimer 
 

Cro is a protein made up of 66 amino acids folded into a single domain. Cro monomers have high affinity 
for each other and hence form a dimer. A Cro dimer binds to the operator sites on the DNA.  Figure  3 shows the 
formation of a Cro dimmer, as depicted in our system. 
 

 
 

Figure 3.Cro monomer collides with another Cro monomer to form a Cro dmer 
  

Operators are specific sites on the DNA molecule which may vary in the strength with which they bind the 
protein. There are three operator sites, OR1, OR2 and OR3 which are relevant to our model of the lambda phage. 
Each of these operator sites vary in their affinity for Rp and Cro.  They are depicted in Figure 1 above.  
 
 
 
 
 
 



2.2.  Lysogeny 
Repressor dimers have higher affinity for OR1 and hence bind to it first. If OR1 is filled, OR2’s affinity is 

increased. Hence in the presence of high concentrations of the Repressor dimer, OR2 is filled almost simultaneously 
with OR1. Thus binding of Repressor to operators is cooperative.  When a Repressor binds to site OR2, it covers the 
part of the DNA which is necessary for the polymerase to bind to PR. Thus, it prevents RNA polymerase from 
binding to the Cro gene and turns it off. Consequently, it helps polymerase to bind and begin transcription of the cl 
gene in a lysogen. Thus, repressor exerts both  positive and negative control.  this is shown in Figure 4. 
 

 
 

Figure 4. Repressor action 
 
2.3.  Lysis 

Repressor at OR1 and OR2 together, keeps Cro off and stimulates transcription of its own gene, cl. 
Repressor is synthesized continuously as long as cells grow and divide. If Repressor concentration increases, it binds 
to OR3 and turns its own gene off, thus preventing further synthesis of repressor. Once the repressor concentration 
falls down to a level such that OR3 is empty, then cl gene is turned on and normal synthesis continues. Thus a 
constant Repressor concentration is maintained, despite fluctuations in the growth rate. 

To change the state of the switch, ultraviolet (UV) light is applied. UV light leads to a significant change in 
the behavior of a bacterial protein called RecA causing it to cleave λ Repressor monomers. The cleavage effectively 
inactivates Repressors since they are no longer able to dimerize and the monomeric forms have low affinity for the 
operator. As a result, there are few dimers to replace the ones which fall off the operator sites.  As Repressor dimers 
fall off OR1 and OR2, the synthesis of Repressor is stopped. Hence no further Repressor to bind to the empty 
operator sites is available. Consequently, Polymerase binds to PR to begin transcription of the Cro gene. 

Cro dimers bind non-cooperatively to the operator sites. The affinity of Cro for the three operator sites is 
opposite to that of the Repressor. Hence, if a Cro dimer approaches the operator sites, all of which are empty, then 
Cro binds to OR3. This prevents binding of Polymerase to PRM and abolishes further synthesis of Repressor. At this 
point, the switch is said to be flipped and lytic growth continues. As PR is turned on and Cro is transcribed, more 
Cro is synthesized until it fills OR1 and OR2. In summary, Cro first stops Repressor synthesis and after some time 
turns off its own gene.  This is depicted in Figure 5. 
 



 
 

Figure 5. Cro action 
 
 The phage lambda virus has one of the simplest gene regulatory systems which shows an interesting 
phenomenon analogous to a switch (from lysogenic to lytic state and vice versa), when injected into E. coli bacteria. 
The various processes that go into the gene transcription, such as Repressor dimerization, dissociation and decay,  
and translation, are modeled in our system along with spatial aspects like the promoter and operator regions of the 
DNA. The detailed biological mechanisms and nomenclature can be found in [10].  
  Tsui has developed an agent-based model of the lambda switch. Her paper shows that agent-based 
modeling is an effective approach for studying gene regulatory systems at the molecular level. Our work is an 
extension of her work [2]. Much work has been done on phage lambda using the differential and stochastic models. 
See, for example [11], [12], [13] and [14].  We would like to study such factors as space, concentration of proteins 
and the molecular-level dynamics which influence the lytic and lysogenic process of a phage lambda system and 
compare the qualitative and quantitative results against those predicted by models based on ordinary differential 
equations or stochastic simulation.  
 
3.  Modeling Specifics 
 We have modeled a basic phage lambda DNA structure and protein behaviors based on Ptashne’s extensive 
work on the phage lambda virus and have followed his notations of names and structure [10]. The reactions shown 
in figure 6 [14] have been modeled using the agent-based approach. 
 
3.1.  Agent Rules 

BREVE, the language we will use, provides for in-built classes of the type Mobile and Stationary, both 
derived from a base class, Object. Agents of type Repressor, Cro, RecA, and RNA polymerase (RNA Poly) are 
modeled as agents of type Mobile. Each of these agents has an identification, shape, color, velocity and lifetime. 
Some of the local agent rules are: 

• Repressor, Cro, RecA, RNA poly are initialized as monomers.  
• All mobile molecules can move in a fixed volume around the DNA.. 
• All mobile molecules have random motion with a fixed, equal velocity. 
• All molecule agents have a lifetime for which they would be present in the environment. 
• A monomer (Repressor or Cro) will form a dimer upon collision with another monomer. 
• A dimer (Repressor or Cro) will dissociate into its constituent monomers after a certain period of time 

within its lifetime. 
• Agents decay after their lifetime has ended. 
• RecA on colliding with a Repressor monomer causes it to be incapable of forming a dimer. 
• Dimer agents (Repressor and Cro) sense the affinity and distance to operator sites. If any of the operator 

sites are not filled, they attach to the appropriate site. Else, they continue to move randomly. 
• Promoter agents sense the status of the operator sites and accordingly set their own states. 



• RNA Polymerase agent senses the status of the promoters. If one of them is turned on, then it binds to it 
and starts synthesizing either Repressor or Cro until it reaches the end of the gene sequence. 
The Controller class, which is analogous to the main() class in the C++ language, is responsible for 

initializing all the agents, monitoring their behavior and updating the global behavior of the system. It does not 
however centrally control the system and thus provides for local agent behaviors to evolve over time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The reactions comprising the phage lambda switch 

 
3.2.  UML Description 
 For our system we have used the UML constructs class, entity-relationship diagram, and state diagram. 
 
3.2.1.  Class and Entity-Relationship Diagrams 

Class is a template for a set of objects that share a common set of attributes and operations. Figure 7 gives 
an example of a class.  The first section specifies the name of the class.  The second section specifies the attributes 
of the class.  For example, type is an attribute of the class RpMonomer. The third section specifies the operations 
performed by the class.  For example, to get-type is an operation performed by the RpMonomer class to access the 
type attribute.  In our system each class corresponds to a type of agent.  The complete set of classes we have used is 
given in Figure 8.  

 
Figure 7. Example class--RpMonomer  
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Figure 8. The class diagrams of agents in the system  
 
 
 



Entity-relationship or ER diagram shows the relationships and interfaces between classes.  The ER diagram for the 
phage-lambda switch mechanism is shown in Figures 9-11.  In Figure 9, the legends for the three basic types of 
realationships are given.  Is-a relationship between classes indicates inheritance of attributes and operations by the 
class in the lower-level hierarchy of the one above it. In Figure 10, Operator and Promoter are classes which both 
inherit the properties of the class DNARegion.  Has-a relationship indicates that the class is a composition of 
class(es). In Figure 11, RpMonomer is a class which is a component of Class RpDimer.  All other relationships in the 
ER diagrams are of the generic type "uses". 

    

 
 
 

Figure 9. Legend for class diagram notations 
 

   
 

Figure 10. ER diagram for system’s stationary objects  
 
 
 
 



 
 

Figure 11. ER diagram for system’s mobile objects  
 

The agent-based approach allows us to view the state of the system from multiple points of view. The phage lambda  
system after initialization with enough repressor concentration goes into the lysogenic state. It continues to be in the  
same state until UV light is applied. It then goes into the lytic state. 
 
3.2.2.  System State Diagrams  
 The agent-based approach allows us to view the state of the system from multiple points of view. The 
phage lambda system after initialization with enough repressor concentration goes into the lysogenic state. It 
continues to be in the same state until UV light is applied. It then goes into the lytic state.  This is shown in Figure 
12.  The Rp and Cro Dimer agents after being initialized are in a state of random motion. However, if they sense that 
the operator sites are empty, then they bind to that particular site(s).  This is shown in Figure 13. 
   

 
 

Figure 12. State machine representing the system states  
 



 
 

Figure 13. State machine representing the states of a Repressor dimer agent  
 

4.  Results 
We have modeled the phage lambda system as defined in UML.  Some example snapshots of the 

simulation are shown in Figures 14 and 15.  In these figures the light purple region represents the promoter, Pr 
(right) and the light brown region is the Prm (left). The dark blue regions are the Operators, Or1, Or2, and Or3 (right 
to left). The small red spheres are the Rp monomer agents whereas the large red spheres are the Rp dimer agents.  
The blue spheres represent Cro, the larger ones being the Cro dimer and the smaller ones being the Cro monomer 
agents. The black spheres are the RecA agents and the grey spheres represent the cleaved Repressor monomers. 

 

     
 

Figure 14. DNA and Repressor as simulated in Breve 

 

 
 



 
 

Figure 15. Cro and RecA in action 
4.1.  Breve Simulation Results 

Some details of our program, written in BREVE's steve language are given here.   
• RPMONOMER_COUNT and RECA_COUNT represent the intial number of molecules of repressor 

monomer and RecA monomers, respectively, used in the simulation.  
• RECA_INIT_TIME is the time after start of simulation that RecA monomers are initialized (applying UV 

light). 
• RPMONOMER_LIFETIME, CROMONOMER_LIFETIME, RECAMONOMER_LIFETIME, 

RPDIMER_LIFETIME, CRODIMER_LIFETIME are the total time for which each of the molecule agents 
are active in the simulation. 

• RPMONOMER_VEL, CROMONOMER_VEL, RNA_VEL, RECA_VEL, RPDIMER_VEL, 
CRODIMER_VEL are the velocities of the molecule agents.  

• RP_TO_OR1_TIME, RP_TO_OR2_TIME,  RP_TO_OR3_TIME  are the times for which the repressor are 
bound to the operator sites. 

• CRO_TO_OR1_TIME,  CRO _TO_OR2_TIME,  CRO _TO_OR3_TIME  are the times for which the Cro 
agents are bound to the operator sites. 
 
Table 1 gives the values of the parameters used in the basic simulation. The graph for these values is shown 

in Figure 16(a).  The initial concentration of Repressor monomers is 20. As the simulation proceeds, the 
concentration of Repressor falls down gradually, especially after t = 15 seconds when RecA is initialized. The 
concentration of Cro is found to increase gradually thereafter. 

We also did a series of experiments to study the effects of changes in the various parameters. We present 
some examples here. 

• Figure 16(b) shows the effect of increase in initial Repressor concentration, we increased it to 25. It can be 
seen that Cro was synthesized only after 20 seconds as against 17.5 seconds in Figure 16(a). The rate of 
Repressor decay is much slower than in the former case. 

• Figure 16(c) shows the effect of decreasing initial Repressor amount to 15 molecules The effect of the 
change is the rapid synthesis of Cro.  

• Figure 16(d) shows the effect of modifying the RecA initialization time to 10 seconds instead of 15 
seconds. We observe that Cro starts being produced after just 12 seconds.  

• Figure 16(e) shows the effect of decreasing the lifetime of the Repressor dimer to 4 seconds. Decreasing 
the lifetime of a Repressor dimer effectively reduces the time it is bound to the operator site. Hence, the 
amounts of both Rp and Cro are prone to fluctuate.  

• Figure 16(f) shows the effect of increasing the times that the Repressor is bound to the operator sites. As a 
result, the synthesis of Repressor takes place for a longer time than is the case in 16(a). So, for the same 
amount of RecA molecules, with the same velocities, it takes a longer time to empty OR1 and OR2 and 
hence Cro is not synthesized at a faster rate.  



 

 

 

 

Table 1. The base parameter values for simulation of the phage lambda system 

4.2.  Comparison to ODE and Stochastic Simulation Results 
Krishnan and Purdyl [11] have simulated some of the phage lambda system equations of Figure 6. Their 

results are shown in figure 17.  As can be seen, for an initial 1uM repressor concentration, the concentration of Cro 
in the absence of Rp was found to be 0.2uM. 

At the system level, the kinetics of a reaction is determined by the reaction rate constant and relative 
concentrations of the reactants. At the molecular level, however, the kinetics is a function of the probability of 
collisions between individual molecules of the participating reactants, per unit time [21]. They are also influenced 
by the reactants’ initial concentrations as well as their respective affinities.  Khan et al [21] have estimated relative 
reaction times in terms of the relative rate constants to be  
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where v1 and v2 are the velocities and k1 and k2 are the kinetic constants of two reactions 1 and 2 which have equal 
initial concentrations of reactants. The reaction time thus obtained is scaled against the reaction which is the slowest, 
having the least rate constant among a set of reactions.  

For our calculations, we have calculated the concentrations of each agent molecule using the formula  
 

where C is the concentration of molecules of a given type, N is the number of molecules of that type, A is the 
Avogadro number (6.023 x 1023) of molecules in a mole and V is the volume within which these reactions occur.  In 
our BREVE simulation, we have modeled the DNA structure in terms of the base pairs as obtained from [10]. As a 
result, the volume was found to be approximately 0.15 x 10-15 liters. 
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                   (a) Simulation with values of Table 1                                                              (b) RpMonomer_Count = 25 
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                     (c) RpMonomer_Count = 15                                                  (d)RpMonomer_Count = 15 and RecA_Init_Time = 10 seconds 
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                       (e) RpDimer_Lifetime = 4 seconds                                                                 (f) Rp_to_Or1 = 2, Rp_to _Or2 = 2 

Figure 16. Agent-based modeling and simulation of Rp vs Cro, examples cases    



 

Figure 17. ODE modeling and simulation of Rp vs Cro  [11] 

Krishnan and Purdy [24] have also simulated the stochastic modeling of the phage lambda system and have 
obtained the result shown in Figure 18.    

 

Figure 18. Stochastic modeling and simulation of Rp vs Cro [24] 

In order to compare our result with those of Figure 18, we have scaled our system with the same input 
concentrations for Rp and RNA polymerase [24]. The rate constants of Figure 6, as obtained from [10], were also 
modeled such that all reactions were scaled against the slowest reaction among the set of reactions.  With the kinetic 
constants scaled as the ones in [14] and [24], and the same input concentrations as in [24], we initialize RecA agents 
after just 0.5 seconds of simulation time (Figure 19).   For this simulation, we use the parameter values given in 
Table 2.  We see that the general shape of the curves from 0-50 seconds in Figures 18 and 19 seems to be similar.   
But there are several factors which differ in the two simulation models, and we are still experimenting with the 
correct values for each model, so we are not yet able to compare the two models in enough detail to determine 
definitively how well they match.   
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         Figure 19. Simulation using parameters of [24] and agent-based modeling 

 
 

 

 

 

 

 

 

 

 

 

 

Table 2. The parameter values for simulation of phage lambda system for comparison with [24]  
 
5.  Conclusions and Future Work 

In modeling biological processes, we felt it was necessary to incorporate the spatial and temporal properties 
of the molecules and the gene to provide for a more accurate model of the system. Hence, we modeled and 
simulated the gene expression of the phage lambda virus using the ABM paradigm. The behavior of the genes and 
the regulatory proteins has been modeled for three-dimensional visualization using BREVE.  

Comparing our work to [11], we find that our agent-based approach has the advantage of visualizing and 
understanding the system at the molecular level. By including the knowledge of actual kinetics at the molecular 
level, the accuracy of the model can be improved significantly. Secondly, as we can see from the graphs, we can 

RPMONOMER_COUNT  50 
RECA_COUNT  100 
RECA_INIT_TIME  0.5 
RPMONOMER_LIFETIME  20 
CROMONOMER_LIFETIME  50 
RECAMONOMER_LIFETIME  60 
RP_TO_OR1_TIME  1 
RP_TO_OR2_TIME  2 
RP_TO_OR3_TIME  3 
RPDIMER_LIFETIME  5 
CRO_TO_OR1_TIME  3 
CRO_TO_OR2_TIME  2 
CRO_TO_OR3_TIME  1 
CRODIMER_LIFETIME  5 
RPDIMER_VEL  20 
RECA_VEL  60 
CRODIMER_VEL  20 
RPMONOMER_VEL  5 
CROMONOMER_VEL  20 
RNA_VEL  5 



observe the functioning of the system in the presence of random fluctuations in the expression of genes. Also, the 
effect of varying various parameters like concentrations and velocities can be observed and studied. Our model was 
found to be easy to scale in terms of the both reaction parameters and the level of detail. Hence, we anticipate that 
the phage lambda system can be modeled to include detailed description of the gene structure and behaviors of 
molecule agents.  The model could also be ported to a parallel environment for the simulation of more complex 
systems.     
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