
2 FEBRUARY 2003 Embedded Systems Programming

f
e

a
t

u
r

e

J A M E S H A U S E R A N D C A R L A P U R D Y

mbedded software developers often use a fast, floating-point
processor to prototype systems that will eventually run on a
fixed-point processor. To avoid an inaccurate specification, it’s
important to realistically simulate the fixed-point processor
while generating algorithms based on the prototype. Here we
describe a technique that uses a genetic algorithm (GA) to pro-

vide realistic approximations of known functions or interpolation of sam-
pled data in a fixed-point environment.

Simple multiplication and addition aren’t problematic, but current sys-
tems involve filters, trigonometry, and other complex functions. If the spec-
ification doesn’t take into account the limited word size of the fixed-point
processor, the developer has little choice but to rely on software floating-
point libraries to meet the system requirements, which increases cost, size,
and frustration. The GA-generated integer-based function approximation
described here can be used during prototyping as well as directly imple-
mented in the target fixed-point processor.

Common problems
There’s no silver bullet that will resolve all specification vs. implementation
issues, but you can use technology to reduce the gap.

Consider the problem of interpolating function values from a set of
sampled data points for a highly nonlinear function. An interpolating poly-
nomial of high degree can easily be generated using many commercially
available tools for the purpose of prototyping. The coefficients may range
from very small to very large, making normalization difficult if not impos-

Better
Prototyping

Through Genetics

E
Lookup tables and Taylor series are two common methods for interpolating between experimentally gath-
ered data or for generating a known function such as a sine wave. This article proposes a third approach.

Embedded Systems Programming FEBRUARY 2003 3

sible. Alternatively, a 2-dimensional
lookup procedure will not obtain the
same degree of accuracy unless the
table is large.

Suppose instead that we are given
an equation for a highly nonlinear
function. Using this equation during
prototyping/modeling in conjunction
with a floating-point processor would
lead to accuracy expectations
unachievable in a fixed point proces-
sor, unless floating point emulation
was used.

Common solutions
There are two common methods for
interpolating between experimentally
gathered data or for generating a
known function such as a sine wave.
The first is the table look-up method,
which is used for applications that
don’t require extreme accuracy.2 To
increase accuracy, this method
requires increased memory.

The second method is the Taylor
series. Let’s look at the sine Taylor
series expansion published in the
TMS320C54X DSP Applications
Guide.3 It uses five terms:

and computes a 16-bit result. From 0
to π/2, the error is about 1 bit when
implemented in floating point; this
corresponds to 0.00003 radians. A
fixed-point implementation yields an
error exceeding 0.2 at π/2. In other
words, the accuracy of the sine func-
tion computed by this Taylor series
depends heavily on the implementa-
tion.

These two methods are not the
only options. A standard fixed-point
function has been designed that com-

putes an output using a set of 3rd
degree polynomials.4 The function is
generic and the table of 3rd degree
polynomials is specific to the problem
being solved. That is, the 3rd degree
polynomials might be for computing
temperature from the counts read
from an A/D converter or they might
be for computing the sine of an angle
(or for approximating another known
function). Once the standard function
is coded, only one copy is needed in
the program (or ASIC) to solve a func-
tion evaluation or interpolation prob-
lem.

The polynomial coefficients are
specific to the problem. The number
of polynomials depends on the accu-
racy required. In itself this is not
novel—just efficient.4 What is novel is
how the coefficients for the set of 3rd
degree polynomials are determined.

100% compatible
The question to ask during algorithm
development is not how accurate will
the fixed-point implementation be,
but how accurate do we need it to be.
The true problem being addressed is
the translation from a solution found
for the set of real numbers to the set of
integers. The way to solve this problem
is to find the best solution limited to
the set of integers.

Since most fixed-point processors
and digital signal processors (DSPs)
are 16-bit processors with 16-bit by 16-
bit multiplication units, the integer
space will be limited to +32767 and
–32768. This does not limit the proces-
sor type required for implementing
our standard function. For example,
we have implemented the standard
function in an 8-bit PIC processor that
doesn’t even have a multiplication
unit.

The obvious way to convert from
real coefficients to integer coefficients

is to normalize the coefficients and to
use Q-arithmetic. The numbers used
in Q-arithmetic are integers with an
implied decimal point. It is the
responsibility of the programmer to
manage decimal point alignment. In
many cases, good results can be
attained by normalization and scaling.
The implementation will be unique
for each function and won’t always get
the same results attained during simu-
lation. This method is more of an art
than a science. In the past, this was the
only option available to the imple-
menter.

Rather than using the coefficients
obtained using the least squares
method, normalizing and shifting
them to fit the target architecture, and
hoping that the accuracy is good
enough, we propose finding the best
set of 16-bit integer coefficients with
the desired accuracy directly.

The solution space for four 16-bit
coefficients contains 264 possible com-
binations. Typical numerical methods
cannot be used to find the optimum
set of integer coefficients, and enu-
merating the space takes about a week
of processing time per candidate sub-
span of the data to be fit. The problem
of searching an integer-valued space
for a set of coefficients is integer pro-
gramming—a known nondeterminis-
tic polynomial time problem.

Since there aren’t any numerical
methods for finding the optimal set of
3rd degree polynomials and their inte-
ger restricted coefficients, and since
enumeration is time prohibitive, some
heuristic is needed. One such heuris-
tic is a genetic algorithm (GA). We have
developed a GA that can find the set of
piecewise 3rd degree polynomials with
16-bit integer valued coefficients that
meet a prescribed accuracy constraint.
The GA takes minutes of processing
time compared to more than a year

− − − − −

x

x x x x1

6

1

20

1

42

1

72

2 2 2 2

The genetic algorithm takes minutes of processing time compared to

more than a year for enumeration in typical cases.

for enumeration in typical cases.

Genetic algorithms
For various problems, populations of
possible solutions evolve according to
the biological principles of natural
selection and “survival of the fittest.”
In particular, GAs combine survival of
the fittest among string structures with
a structured yet randomized informa-
tion exchange to form a search algo-
rithm with some of the innovative flair
of human search. In every generation,
a new set of artificial creatures
(strings) is created using bits and
pieces of the fittest of the old popula-
tion; an occasional new part is tried
for good measure.

Each individual in the population
is a possible solution.5 In our case,
each individual represents the four 16-
bit coefficients for a single 3rd degree
polynomial. The goal of the GA is to

maximize the number of points
spanned by each piecewise polynomial
such that the error at each training
point is less than some constraint and
the coefficients are in the range
+32767 to –32768.

The actual GA implementation is
beyond the scope of this article.1,6

Hence, we limit the discussion to
results.

As previously stated, a 5-term
Taylor series expansion, implemented
in fixed-point arithmetic, diverges
when the angle approaches π/2 radi-
ans. A 50-word lookup table for the
range 0 to π with linear interpolation
is superior to the Taylor series.
Because of the symmetry of the sine
wave, only 0 to π/2 radians will be ana-
lyzed. These results can be extended
directly to the cosine function.

Since the lookup table for 0 to π/2
radians requires 26 words, the table of

polynomial coefficients will be restrict-
ed to the same storage limitation. Four
3rd degree polynomials require 20
words of storage. Our goal is to do bet-
ter than table lookup with less storage.

We obtain the input to the GA was
by sampling the sine function over the
range from 0 to π/2. The sampled
input and output were both multi-
plied by 214. The training error con-
straint is 0.75. Additional accuracy can
be obtained by increasing the sam-
pling frequency. An alternative is to
decrease the training error. But, this
will increase the number of polynomi-
als and storage required.

The 3rd degree polynomial evalu-
ated by the standard function has the
following form:

a*(input - breakpoint)3 +

b*(input - breakpoint)2 +

c*(input - breakpoint) + d

Notice that the lower breakpoint
value is subtracted from the input.
This is done to limit the size, and this
result is treated as sign + 15 binary
places. Thus, the coefficients can be
constrained to having integer values.
The precision loss resulting from cub-
ing and squaring can be controlled by
shifting, using a most-significant-bit
detection scheme. Table 1 lists the
coefficients and breakpoints for the
four piecewise 3rd degree polynomials
needed to evaluate sine (q).

To compare the GA to the lookup
table methods, we can test them both
over the entire input range from 0 to
214 counts. This corresponds to a
range of 0 to π/2. The maximum
error between the floating-point com-
puted sine value and the GA value is
less than 1.7 x 10-5. In general, the GA
is significantly superior to the lookup
table approach, as shown in Figure 1.

Figure 2 plots the GA error against
the PC-computed value. For those con-
cerned with throughput, it takes
0.000001126 seconds per sine PC-com-
putation and it takes 0.0000018256 sec-
onds per sine GA standard function
computation on a 450MHz Pentium II.

4 FEBRUARY 2003 Embedded Systems Programming

genetic algorithm

TABLE 1 Coefficients and breakpoints for 3rd degree polynomial

Breakpoint Breakpoint Coefficient Coefficient Coefficient Coefficient
No. Value A B C D
1 0 -21272 -70 32767 0
2 8200 -16345 -16110 28762 7862
3 15900 -7974 -27662 18539 13519
4 22600 -3291 -32051 6222 16085

FIGURE 1 GA and table lookup error relative to the Intel Pentium III FPU

6

5

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x 10-4 GA (red) and table lookup (blue) minus PC computed sine

Proper prototyping
Great products do not occur by acci-
dent; they are engineered. It is true
that the specification should be
implementation independent, but it
is also true that the specification
should not propose performance
and accuracy capabilities that are not
realizable by the target processor.
Some of these issues can be avoided
by using the same standard function
evaluation module during rapid pro-
totyping that will be used in the
product software. Although it is
desirable not to constrain the design
by over-specifying the product, it is
still necessary to show at the end of
the specification phase that the pro-
posed delivered product will indeed
meet the customer’s requirements
and be delivered within cost. esp

Jim Hauser is an assistant professor of com-
puter science at Northern Kentucky
University. He has a PhD from the
University of Cincinnati and has worked
in industry for 18 years as an embed-
ded/DSP programmer for RCA (Cape
Canaveral), Delco Electronics, and Harris
Corporation. You can reach him at
hauserj@nku.edu.

Carla Purdy is an associate professor of
electrical and computer engineering and
computer science at the University of
Cincinnati. She has a PhD in mathematics
from the University of Illinois and a PhD in
computer science from Texas A&M
University. Her email address is
carla.purdy@uc.edu.

References
1. Hauser, James and Carla Purdy, “Sensor

Data Processing Using Genetic

Algorithms,” Proc. 43rd Midwest

Symposium on Circuits and Systems,

August 2000.

2. Texas Instruments, “Sine, Cosine on the

TMS320C2xx,” Application Report

Literature Number: BPRA047, 1997.

3. Texas Instruments., “TMS320C54xDSP

Applications Guide,” Literature Number

SPRU173, 1996.

4. Conte, Samuel and Carl de Boor,

Elementary Numerical Analysis,

McGraw-Hill, 1980.

5. Goldberg, David, Genetic Algorithms in

Search, Optimization, and Machine

Learning, Addison-Wesley, 1989.

6. Hauser, James, “Approximation of

Nonlinear Functions for Fixed-Point and

ASIC Implementations Using a Genetic

Algorithm,” Ph.D. diss., University of

Cincinnati, 2001.

Notes
The method proposed in this article does not
depend on knowing the function to be approxi-
mated, but it can be used if the function is known.
Source code and other related information may be
found at www.embedded.com/code.htm.

Embedded Systems Programming FEBRUARY 2003 5

ge
ne

ti
c

al
go

ri
th

m

FIGURE 2 GA error relative to the Intel Pentium III FPU

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x 10-5

GA results minus PC double precision sine computed value

1.2

1.4

1.6

1.8

