
Altera DE1 Qsys Tutorial

1. Start the Quartus II software (Windows Platform v12.0 Service Pack 2).

2. Create a new project: From the Quartus II toolbar, select File > New > New Quartus II
Project; click Next to skip the Introduction page. In the Directory, Name, Top-Level Entity
page, create a working directory (without spaces) then append \de1_tutorial to the end (this

creates a project directory). Enter de1_tutorial as the project name, which is also the name of the

top level entity. Confirm that the page is the same as in Figure 1; click Next and Yes when

asked to create the project directory.

Figure 1

3. Click Next to skip the Add Files page.

4. In the Family & Device Settings page under Target device, select the option Specific
device selected in ‘Available devices’ list then choose EP2C20F484C7 as the target device.

Confirm that the page is the same as in Figure 2; click Finish to create the project.

Figure 2

5. From the Quartus II toolbar, select Tools > Qsys. Then, from the Qsys toolbar, select File >
Save As... enter nios_system as the file name (this will be the name of the system generated by

Qsys).

6. Within Qsys, confirm that the Project Settings tab is the same as Figure 3.

Figure 3

Note: Steps 7-28 use the Qsys Components Library to build nios_system from individual

modules.

7. Within Qsys, where it says Components Library, select Embedded Processors > Nios II
Processor; click Add.

8. Within the Nios II MegaCore page, select the Nios II/e core; click Finish.

9. Within Qsys, where it says Components Library, select Memories and Memory
Controllers > On-Chip > On-Chip Memory (RAM or ROM); click Add.

10. Within the On-Chip Memory MegaCore page; click Finish.

11. Within Qsys, where it says Components Library, select Interface Protocols > Serial >
JTAG UART; click Add.

12. Within the JTAG UART MegaCore page; click Finish.

13. Within Qsys, where it says Components Library, select Peripherals > Microcontroller
Peripherals > Interval Timer; click Add.

14. Within the Interval Timer MegaCore page; click Finish.

15. Within Qsys Builder, where it says Components Library, select Memories and Memory
Controllers > External Memory Interfaces > SDRAM Interfaces > SDRAM Controller;
click Add.

16. Within the SDRAM Controller MegaCore Parameter Settings page, change it to look like

Figure 4; click Finish.

Figure 4

Note: This system will use the DE1’s 50 MHz clock source (external clock source), however

it will need an ALTPLL to create a -3ns shifted clock signal c1 for the SDRAM

controller/SDRAM chip (Accounts for clock skew on the DE1 board) and a 25 MHz clock

source for the toggling red LEDs.

17. Within Qsys, where it says Components Library, select PLL > Avalon ALTPLL; click

Add.

18. Within the MegaWizard Plug-In Manager change the Parameter Settings >
General/Modes to the settings in Figure 5; click Next.

Figure 5

19. Within the MegaWizard Plug-In Manger change the Parameter Settings > Inputs/Lock

tab to the settings in Figure 6; click Next.

Figure 6

20. Within the MegaWizard Plug-In Manager leave the Parameter Settings > Clock
switchover tab unchanged; click Next.

21. Within the MegaWizard Plug-In Manager change the Output Clocks > clk c0 tab to the

settings in Figure 7; click Next.

Figure 7

22. Within the MegaWizard Plug-In Manager change the Output Clocks > clk c1 tab to the

settings in Figure 8; click Next.

Figure 8

23. Within the MegaWizard Plug-In Manager change the Output Clocks > clk c2 tab to the

settings in Figure 9; click Next.

Figure 9

24. Within the MegaWizard Plug-In Manager leave the EDA tab unchanged; click Finish to
add the PLL to the system.

Note: In a Qsys system a clock source can be exported or connected internally, but not

both. Thus necessitating the use of a clock bridge, the clock bridge allows clock source c1

to be exported to the SDRAM chip as well as internally connected to the SDRAM

controller. The Qsys interconnect will be added in steps 34-36.

25. Within Qsys, where it says Components Library, select Bridges > Clock Bridge; click

Add.

26. Within the MegaCore Clock Bridge page, change the settings to look like Figure 10; click

Finish.

Figure 10

27. Within Qsys, where it says Components Library, select Peripherals > Microcontroller
Peripherals > PIO (Parallel I/O); click Add.

28. Within the MegaCore PIO (Parallel I/O) page, change the settings to look like Figure 11;

click Finish.

Figure 11

29. Within Qsys, select the newly added component and from the toolbar, select Edit >
Rename; type HEX0 and press enter.

30. Repeat steps 27-29 three more times changing the names to HEX1, HEX2, and HEX3.

31. Within Qsys, where it says Components Library, select Peripherals > Microcontroller
Peripherals > PIO (Parallel I/O); click Add.

32. Within the MegaCore PIO (Parallel I/O) page, change the settings to look like Figure 12;

click Finish.

Figure 12

33. Within Qsys, select the newly added component and, from the toolbar, select Edit >
Rename; type green_LEDs and press enter.

34. Export the necessary signals: To export a module’s signal, find its row and in the Export
column click where it says Click to export. Once the signal name is typed, press enter to add

the export; pressing esc will cancel the export. The following exports will need to be created:

 green_LEDs > external_connection > (Click and press enter)

 HEX0 > external_connection > (Click and press enter)

 HEX1 > external_connection > (Click and press enter)

 HEX2 > external_connection > (Click and press enter)

 HEX3 > external_connection > (Click and press enter)

 sdram_0 > wire > (Click and press enter)

 altpll_0 > inclk_interface > (Click and press enter)

 altpll_0 > c2 > (Click and press enter)

 clock_bridge_0 > out_clk_1 > (Click and press enter)

35. Create clock connections using the ALTPLL and the Clock Bridge: First, delete the auto

generated clock source clk_0 by selecting it and, from the Qsys toolbar, selecting Edit >
Remove. Make the following clock connections by clicking on the corresponding empty circles

within the Connections column (dark circles indicate connections):

 altpll_0.c0 > nios2_qsys.clk

 altpll_0.c0 > onchip_memory2_0.clk1

 altpll_0.c0 > jtag_uart_0.clk

 altpll_0.c0 > timer_0.clk

 altpll_0.c0 > HEX0.clk

 altpll_0.c0 > HEX1.clk

 altpll_0.c0 > HEX2.clk

 altpll_0.c0 > HEX3.clk

 altpll_0.c0 > green_LEDs.clk

 altpll_0.c1 > clock_bridge_0.in_clk

 clock_bridge_0.out_clk > sdram_0.clk

36. Create master/slave connections using the Nios II Processor: Make the following

master/slave connections by clicking on the corresponding empty circles within the

Connections column (dark circles indicate connections):

 nios2_qsys_0.data_master > onchip_memory2_0.s1

 nios2_qsys_0.instruction_master > onchip_memory2_0.s1

 nios2_qsys_0.data_master > jtag_uart_0.avalon_jtag_slave

 nios2_qsys_0.data_master > timer_0 > s1

 nios2_qsys_0.data_master > sdram_0.s1

 nios2_qsys_0.data_master > sdram_0.s1

 nios2_qsys_0.data_master > altpll_0.pll_slave

 nios2_qsys_0.data_master > HEX0.s1

 nios2_qsys_0.data_master > HEX1.s1

 nios2_qsys_0.data_master > HEX2.s1

 nios2_qsys_0.data_master > HEX3.s1

 nios2_qsys_0.data_master > green_LEDs.s1

37. Assign reset and exception vectors: Within Qsys, select the Nios II Processor and, from the

toolbar, select Edit > Edit… Within the MegaCore page, select sdram_0.s1 from the Reset
vector memory drop-down menu as well as the Exception Vector drop-down menu. The page

should look like Figure 13; click Finish.

Figure 13

38. Assign Base Addresses: From the Qsys toolbar, select System > Assign Base Addresses.

39. Create Global Reset Network: From the Qsys toolbar, select System > Create Global
Reset Network.

40. Assign interrupt numbers and connect the IRQs for the JTAG UART and the Interval
Timer: Within Qsys, find the jtag_uart_0 row and connect its IRQ in the IRQ column, then

select the IRQ number and type 16. Within Qsys, find the timer_0 row and connect its IRQ in

the IRQ column, then select the IRQ number and type 0.

41. Within Qsys, in the Generation tab, click Generate.

42. Within Qsys, in the Address Map tab, copy the base addresses of HEX0, HEX1, HEX2,
HEX3, and green_LEDs for later use in the application software.

43. Within Qsys, in the HDL Example tab, copy the instantiation of nios_system for later use in

the Quartus II, Verilog top-level entity.

44. Within Quartus II, select File > New > Verilog HDL File.

45. Within Quartus II, select File > Save As… de1_tutorial.v.

46. Within Quartus II, paste the code from Figure 14 into de1_tutorial.v.

47. Within Quartus II, select File > New > Verilog HDL File.

48. Within Quartus II, select File > Save As… toggle.v.

49. Within Quartus II, paste the code from Figure 15 into toggle.v.

50. Within Quartus II, select Assignments > Import Assignments…

DE1_pin_assignments.csv.

51. Within Quartus II, select Processing > Start Compilation.

52. Within Quartus II, select Tools > Programmer; within Programmer click Start.

53. Exit Quartus II.

Figure 14

module de1_tutorial(CLOCK_50, LEDG, LEDR, DRAM_CLK, DRAM_CKE,

DRAM_ADDR, DRAM_BA_1, DRAM_BA_0, DRAM_CS_N, DRAM_CAS_N,

DRAM_RAS_N,

DRAM_WE_N, DRAM_DQ, DRAM_UDQM, DRAM_LDQM, HEX3, HEX2, HEX1, HEX0);

input CLOCK_50;

output [7:0] LEDG;

output [9:5] LEDR;

output [6:0] HEX3;

output [6:0] HEX2;

output [6:0] HEX1;

output [6:0] HEX0;

output [11:0] DRAM_ADDR;

output DRAM_BA_1, DRAM_BA_0, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;

output DRAM_CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM;

inout [15:0] DRAM_DQ;

wire toggle_clock;

 nios_system u0 (

 .pio_0_external_connection_export (LEDG), // pio_0_external_connection.export

 .hex3_external_connection_export (HEX3), // hex3_external_connection.export

 .hex2_external_connection_export (HEX2), // hex2_external_connection.export

 .hex1_external_connection_export (HEX1), // hex1_external_connection.export

 .hex0_external_connection_export (HEX0), // hex0_external_connection.export

 .sdram_0_wire_addr (DRAM_ADDR), // sdram_0_wire.addr

 .sdram_0_wire_ba ({DRAM_BA_1, DRAM_BA_0}), //

.ba

 .sdram_0_wire_cas_n (DRAM_CAS_N), // .cas_n

 .sdram_0_wire_cke (DRAM_CKE), // .cke

 .sdram_0_wire_cs_n (DRAM_CS_N), // .cs_n

 .sdram_0_wire_dq (DRAM_DQ), // .dq

 .sdram_0_wire_dqm ({DRAM_UDQM, DRAM_LDQM}), //

.dqm

 .sdram_0_wire_ras_n (DRAM_RAS_N), // .ras_n

 .sdram_0_wire_we_n (DRAM_WE_N), // .we_n

 .altpll_0_inclk_interface_clk (CLOCK_50), // altpll_0_inclk_interface.clk

 .altpll_0_c2_clk (toggle_clock), // altpll_0_c2.clk

 .clock_bridge_0_out_clk_1_clk (DRAM_CLK) // clock_bridge_0_out_clk_1.clk

);

 toggle t(toggle_clock, LEDR);

 endmodule

Figure 15

module toggle(clock, counter_out);

input clock;

output [9:5] counter_out;

reg [31:0] counter_data;

always @ (posedge clock)

 begin

 counter_data <= counter_data + 1;

 end

assign counter_out[9] = counter_data[21];

assign counter_out[5] = counter_data[21];

assign counter_out[8] = counter_data[26];

assign counter_out[6] = counter_data[26];

assign counter_out[7] = counter_data[27];

endmodule

