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Abstract

In this thesis we propose novel collaborative filtering approaches for large

data sets. We also demonstrate how these collaborative approaches can be

used for creating user recommendations for items, based upon preferences

towards items that users demonstrated in the past.

We propose a framework, called a collaborative partitioning or CP for short,

that is focused on finding a partition of a given set of items in order to

maximize the number of partition-satisfied users. Two theoretical models

for evaluating the quality of partitions are proposed. Both are introduced as

bicriteria optimization problems with the percentage of satisfied users and

the level of users satisfaction as the two optimization coefficients. As both of

these bicriteria optimization problems are NP-hard, we propose Hierarchical

Agglomerative Clustering - based approaches to compute approximations of

their solutions. The results obtained by running the heuristic approaches on

a real dataset show that the proposed approaches for CP have good results

and find items partitions that are very close to a human-based genre parti-

tion for a given set. The genre partitions are partitions of items according to

some human-created classifications. The results also show that the proposed

heuristic approaches are a very good starting point in creating a top-k rec-

ommendation algorithms.



The second part of this thesis proposes a collaborative filtering framework

for finding seminal and seminally affected work for sets of items.

The concept of seminal work for a set of items is used to mark items re-

leased in the past that are highly correlated to some future sets of items in

the terms of users preferences. Similarly, the seminally affected work is a

concept that is used in this thesis to mark items that are highly correlated

to some previously released (older) items in the terms of users preferences.

In this approach, we translate item-item correlation into a correlation di-

rected acyclic graph (DAG). Direction in the DAG is determined by a chrono-

logical ordering of items. We demonstrate and validate the proposed ap-

proach by applying it on the web-based system called MovieTrack. This

system uses seminal and seminally affected work in movies to give movie

recommendations to users. It is built by applying the previously proposed

approach on a real data set of movie reviews released by Netflix.
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Chapter 1

Introduction

Information Overload in the Petabyte Age Finding relevant informa-

tion has been a challenge for a long time. Six decades ago people started

reading digital information using computers. Two decades ago the Internet

made digital information accessible to more people. More than a decade ago

the first web search engines (WebCrawler and Lycos in 1994) started crawl-

ing Internet information and storing it in a single database. Today Google

servers process a petabyte of data every hour [34].

Information filtering is the process that removes information that is not of

interest to users. The majority of information we are browsing through and

choosing from today is already filtered even before it becomes available for our

viewing. If we did not have any kind of filtering when browsing for relevant

information, even the simplest tasks of finding the right information would

be a long and possibly not a very successful process. For example, when we
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log into the Blockbuster website, it automatically filters some movie items

that we might like, based on our viewing history. When we are searching

for news at some of the popular news websites, such us Google News [12],

we can create a personalized view of news items that match our interests.

Based upon our current interests and viewing history, the system will filter

all news items that might be interesting to us and help us to easily browse

through the massive amount of news available every day. Another example

of information filtering can be found on the Amazon website. When we log

into the Amazon website, it shows us some catalog items that, most likely,

might be of interest to us, based on our purchasing and rating history.

The recent years have increased information filtering challenges by intro-

ducing the new “Petabyte Age”, where useful and relevant information are

filtered for users from petabytes of information stored in the Internet cloud.

The amounts of information we are exposed to nowadays are massive and

far beyond our comprehension and ability to digest. Just for example, The

Amazon.com company has had several million available catalog items and 29

million active customers in 2003 [15].

That number today is significantly higher. Netflix recently released their

ratings dataset that contains more than 1006 movie ratings for 17770 movies

rated by 480189 users [23]. The size of the data set that Netflix processes

everyday is believed to be much larger than that. StumbleUpon [29], one

2



of the largest social media sites, as of April 2008, contains over 5 million

users that gave over 5 billion ratings (called “stumbles”) for pages that they

found on the Web [33]. Google News website keeps track of several million

news articles from 4500 news sources throughout the world. Looking at

these statistics we can see that filtering information at a user’s level is not

enough anymore. The massive size of information on these websites today

requires that we establish concise and mathematical models to be able to

search and retrieve efficiently. The Petabyte Age introduces great challenges

of creating new models and automated approaches for making information

filtering scalable and precise at the same time.

In this thesis we present novel models and scalable algorithms for filtering

information from large information corpora. The main focus of this thesis is

in the specific area of information filtering called collaborative filtering (or

social information filtering). A detailed introduction to collaborative filtering

is given in the second chapter. Our objectives in this thesis are in designing

collaborative filtering approaches that can be used to imply future user in-

terests based upon existing users preference data. The problems that we are

attempting to solve when designing our collaborative filtering models and

algorithms are two-fold and tightly connected - scalability (with respect to

the time complexity) and accuracy (with respect to user satisfaction). When

dealing with massive information corpora, scalability of the algorithms ap-

plied to the corpora is of a crucial importance. Small changes in the time

complexity can result in significant computational overheads and cause a pro-

3



gram to run, instead of a couple of hours, several days, even weeks or months.

The second important issue in CF area is accuracy. A collaborative filtering

system has to be as accurate as possible, because we do not want to filter

out and “hide” from a user items that might be interesting to him. From the

other side, we also do not want to overwhelm the user with a large number

of items that are not interesting at all, because that completely defies the

purpose of information filtering. Sometimes optimal solutions in the terms

of accuracy for problems in collaborative filtering are NP-hard, as it is for

the bicriteria optimization problems related to the collaborative partitioning

(CP) framework proposed in this thesis. This motivates heuristic approaches

to the problems.

For a given set of users U and items I that are rated by the users, CP fo-

cuses on the problem of identifying item partitions that optimize the fraction

of users that will be satisfied with a given partition. Unlike the traditional

clustering, the proposed CP model is a novel, bicriteria optimization prob-

lem, which has a goal of finding the best clustering that satisfies the most

users at the highest level of satisfaction. CP of items is used to identify

clusters of users with same or very similar taste towards the given sets of

items (they like or dislike items in a same way). Besides that, it is also used

to identify possible existence of preferences towards certain genres of movies

in a given dataset. Another use of CP is to generate, from a given user-

items preference data, a hierarchy of topics that assists users to efficiently
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browse through a massive set of items to find items of a possible interest.

CP model can be further extended, as it is done in this thesis, to produce

top-k recommendation algorithms.

One of the ways to find scalable algorithmic solutions for bicriteria CP

problem, and problems with the same computational complexity as the CP

problem is to find heuristics that approximate the optimal solution.

The first part of this thesis introduces our mathematical model and ap-

proach for collaboratively finding topic segmentation of items to maximize

users’ satisfaction. This problem is NP-hard (for proofs and discussions see

3.4) and our approach in solving it is to find suitable heuristics that approx-

imate the optimal solution.

In the second part of this thesis we propose a novel collaborative filtering

framework for finding seminal and seminally affected work for sets of items.

The concept of seminal work for set of items is used to mark items released in

the past that are highly correlated to some future sets of items in the terms

of users preferences. Similarly, the seminally affected work is a concept that

is used in this thesis to mark items that are highly correlated to some previ-

ously released (older) items in the terms of users preferences.

In this approach, we translate item-item correlation into a correlation di-

rected acyclic graph (DAG). Direction in a DAG is determined by a chrono-

logical order of items, e.g, in DAGs that are used for finding seminal work

for a given set of items, edges are directed from older to more recent items,

5



and in DAGS that are used for finding seminally affected work for a given

set of items, edges are directed from more recent to older items. Querying

for seminal and seminally affected work for given sets of items is achieved by

querying previously described DAGs for ancestor queries. Querying DAGs

for ancestor queries is implemented in efficient and scalable way by designing

compact labelling schemes for nodes in DAGs that contain information about

structural properties of DAGs. By applying our proposed labelling schemes

we are able to encode all-path information for each node (item) in correlation

DAGs by labelling each node with a relatively short labels and evaluating

ancestor queries for a set of items by directly reading structural information

encoded in their labels.

We demonstrate and validate the proposed approach by applying it on the

web-based system called MovieTrack. This system uses seminal and sem-

inally affected work in movies to give movie recommendations to users. It

is built by applying the previously proposed approach on a real data set of

movie reviews released by Netflix.

Both of the described approaches are focused on mathematically representing

users preference data and using these models to infer future preferences for

users based on their ratings history.

The contribution made in this thesis is two-fold - we proposed mathemati-

cal approaches for modeling users preference in large data sets and we also

designed algorithms and methodologies that can be applied for testing the

proposed approaches on real data sets.

6



Chapter 2

Background Work and

Terminology

When discussing methods in information filtering, there are three dominant

research paradigms and approaches − content−based filtering, collaborative

filtering (also known as social information filtering) and hybrid filtering.

In this chapter we give an overview of existing information filtering method-

ologies, describe existing systems that that implement the mentioned method-

ologies and give comparisons with research proposed in this thesis.

2.1 Content-based Information Filtering

Content-based information filtering exploits only information that can be de-

rived from the content of filtered objects. This kind of information filtering

7



is closely related to the area of information retrieval, and it has many simi-

larities with it. Both approaches are usually applied on the textual data, al-

though content-based information filtering usually deals with semi-structured

and unstructured data, whereas information retrieval most commonly deals

with structured data. Many information retrieval research methods and re-

sults are used to accomplish content-based information filtering tasks. This

holds especially for IR methods in the areas of text representation (indexing),

retrieval techniques and evaluation of retrieved results. However, besides

these similarities, content-based information filtering has some distinct char-

acteristics that separate it from information retrieval as a well defined and

unique area. Information retrieval is usually concerned with the selection

of texts from a relatively static database, while content-based information

filtering is mainly concerned with selection and elimination of texts from dy-

namic data streams. Content-based information filtering is usually based on

description of individual or group preferences, often called profiles, which are

gathered and accumulated during longer time periods, while information re-

trieval is focused on retrieving information relevant to a user’s one-time need

for knowledge. That need is usually described with a query that is written

in a system-specific query language, and it is executed only once or couple of

times. Content-based information filtering is concerned with long-term in-

formation goals of its users and repeated use of a system, while information

filtering is usually concerned with single uses of the system by a person with

a one-time goal and one-time query. Complete description of similarities and

8



differences of these two areas can be found in the Belkin et. al, 1992 [5].

Content-based information filtering is based on selecting items for a given

user based upon correlations between the content of unseen items and the

user’s preferences in the past. For a given user and the user’s profile, these

systems are trying to find future items of interest for the user by measuring

similarities between the contents of the user’s preferred items in the past and

unseen items and filtering out all unseen items which content is not highly

similar to the content of items in the user’s profile. The following systems

are applying content-based information filtering when presenting items to a

user.

2.1.1 Google News

Google News website is a news site that aggregates news articles from more

than 4500 news resources worldwide, groups similar stories together and dis-

plays them according to each reader’s personalized interest. Besides filtering

news items according to personalized interests, this system also provides news

alerts, where a reader chooses keywords of interest and the system automati-

cally filters incoming news that match the given keywords and sends them to

the reader’s email. As it was mentioned before, this system keeps tracks of

several million news articles, and without the information filtering function-

alities provided by the Google News, filtering out non-relevant news items

would be a very tedious process for users.

9



2.1.2 SIFT

Stanford Information Filtering Tool (SIFT) [35] is a content-based infor-

mation filtering system that started as a small experimental service at the

Stanford University in 1994, grew to a reasonably large system with 18400

daily users and 40100 long-term profiles within few years, and eventually

became a commercial operated system operated by the Sift Inc. startup

company. SIFT collects Usenet NetNews and articles from different mail-

ing lists, and gathers users’ profiles using email of web forms. Every user

submits a description of its own profile using some forms of information re-

trieval languages. At the beginning stages of the SIFT development simple

Boolean queries were used to describe profiles. Afterwards, when complex-

ity of descriptions for user profiling increased, the SIFT started to utilize

more complex query languages and implemented a new indexing scheme for

profiles, capable to handle Vector Space Model (VSM) [26] queries. When

a user logs into SIFT, the system tries to do optimal matching between all

incoming news articles and the user’s profile description. At the beginning

stages of SIFT development, all item-profile matchings were performed on a

centralized server, but after some time scalability became a huge issue, so

matching process was distributed on multiple servers.

10



2.1.3 NewsSieve

NewsSieve [13] is a content-based information filtering system that was used

for content-based filtering of the Usenet news groups. It was developed as

a part of a research project at the University of Bonn, Germany. Each user

in the NewsSieve system starts building its profile by reviewing unfiltered

messages and marks interesting and unimportant text. All documents in the

NewsSieve are reduced to their words and their frequencies. In the beginning

stages of the NewsSieve development all rated documents from profiles as well

as all documents from the NewsSieve system were represented as vectors

using Vector Space Model (VSM). For a given user, the output of the filter

was calculated by searching for new messages that were represented by a

vector that matched the user’s profile vector. The advantage of this approach

was the fact that filters based on the VSM model were easy to implement.

However, this approach that performed VSM- based filtering did not achieve

a very high accuracy, so the vectors were refined into a rule system. Each

profile was redesigned to contain a set of rules that assigned a certain scores

not to just one word but to groups of words. The total score of a text is

computed as a sum of all assigned scores, for a given profile.

As previously mentioned, content-based information filtering is applicable

only to filtering objects that have parsable content, such as text documents

and web pages, or images, videos or other multimedia items that are manually

tagged with some text (e.g., “image with red flowers”, “video of the Eiffel

Tower” etc. ). More recently a couple of projects evolved that are dealing

11



with image filtering based upon analyzing and comparing contents of images

- color, texture and shape, but they are dealing with digital image processing

algorithms and are outside of scope in this thesis.

The main drawback of this approach, besides the fact that it is applicable

only to items with parsable content, is the fact that it usually cannot deduce

any kind of hidden, non-transparent preference correlation information be-

tween different users and different items.

2.2 Collaborative Filtering

Collaborative filtering (also called Social Information Filtering) analyzes sim-

ilarities in taste between different users to filter information items. It relies

on the fact that users’ preferences are not randomly distributed – when an-

alyzing item ratings given by large groups of users, we can usually detect

general trends and patterns within the taste of one person as well as between

groups of people.

In collaborative filtering systems, each user rates certain subset of infor-

mation items. The rating scale varies from one dataset to another. For exam-

ple, in the StumbleUpon social media site, each user can rate web pages and

multimedia files that they found on the Web by either given them a “thumb

up”, which means that the user likes the item, “thumb down”, which means

that the user dislikes the item, and “no opinion”. In the Cinematch system

[6] developed by Netflix, users rate movie items on the scale from one to

12



five stars, and the most positive opinion is expressed with five stars. Based

upon existing preferences of a given user, a social information filtering sys-

tem filters information about the interests of the user by collecting taste

information from many other users (collaborating).

A simplified example for social information filtering can be given on the

next movies example. Let’s assume that two users A and B watched many

similar movies and have very similar taste patterns (e.g., they are both huge

science fiction and war movies fans). Assume that both users watched and

liked some science fiction movies, such us “Blade Runner”, “2001 A Space

Odyssey”, “Star Wars I”, “Star Wars II”, “Star Wars III” and “Star Wars

IV”, as well as some war movies, such as “Saving Private Ryan”, “Enemy

at the Gates” and “Schindler’s List”. From this data we can, with a certain

probability predict that the user A will most probably like “Star Wars IV” or

“Patton” if the user B has already seen and liked those movies. This simpli-

fied approach can be also applied for movies that one of these users watched

and didn’t like and other user hasn’t seen yet. The previous example is just

one form of social information filtering. Besides grouping users in similar

groups according to similarities between their common preference patterns,

we can also group movies (items) in a given dataset according to some topics-

based classification that is defined by the given dataset. In that way we can

detect subsets of items that are usually preferred together by majority of

users. The following systems are examples of academic collaborative filtering

projects.
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2.2.1 GroupLens

GroupLens [18], [14] is a collaborative filtering system designed for filtering

Usenet news at the University of Minnesota. The goal of this system is to

help people to collaborate on finding articles they will most probably like in

incoming streams of available Usenet articles. The architecture of this system

is designed to blend into existing Usenet client/server architecture. User logs

into the system using the client newsreader application. This application

then connects to the user’s local Usenet news server and to the GroupLens

server. For each user the GroupLens server contains information about all

ratings the user has made in the past. Besides that, this server contains,

for each article all ratings that are given by users for that article. Based on

the rating values for the given user, the system identifies users that are most

similar to the current user, filters out news articles retrieved from the Usenet

news server, and presents to the given users only articles that are highly

ranked by the most similar users. The current user then browses through the

retrieved articles, rates them on the scale from one to five and sends back his

rating updates to the GroupLens server.

2.2.2 MovieLens

MovieLens [10], [19] is an online movies recommender system developed

at the University at Minnesota, in the same research group that developed

the previously described GroupLens system. It invites users to rate movies
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that are contained in their database, and in return makes personalized rec-

ommendations and predictions on movies that the user has not yet rated.

This online service is one of the most popular non-commercial movies recom-

mendation websites. Each user that wants to rate movies on the MovieLens

website is asked to create a user account, where all personal preferences and

movie ratings for the given user are recorded. Movies are rated on a rating

scale from 1 to 5, with 5 being the highest score. Seven years ago, the Movie-

Lens research group released their ratings dataset, that contained 1000029

movie reviews given by 6040 MovieLens users for approximately 3900 movies.

Today the size of their data set is much larger.

2.2.3 Ringo

Ringo [27] is a collaborative filtering recommender system that makes per-

sonalized music recomendations. Users in this system describe their music

taste by rating some songs. Each user has a profile that keeps track of all

songs that the user has rated in the past, together with the ratings. All rat-

ings are given on a scale from 1 to 7, with 7 having the highest value. Ringo

compares user profiles to find users who have similar taste in music (they

like or dislike same songs). Based upon preferences expressed by the most

similar users, the system generates preferences for a given user. Specifically,

each user can ask Ringo to (1) suggest new artist/album that the user will

like, (2) list artists/albums that the user will dislike and (3) make predictions

about a specific artist/album. When a user logs into Ringo for the first time,
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the system sends a list of 125 artists and asks the user to give ratings for

them. The user can chose not to rate artists he is not familiar with. The list

is generated on a central server in two phases. In the first phase, the system

choose the most popular artists from the database and adds them to the list.

In the second phase, the system randomly selects some artists and adds them

to the list as well. Besides recommendation services, this system offers some

other services to the users. For example, each user can write short reviews

about artists and albums, so other users can see and read those reviews.

2.2.4 Types of Algorithms for Collaborative Filtering

Collaborative filtering algorithms can be divided into two main categories -

Memory-based and Model-based algorithms [8]. The first group of algorithms

usually maintains tables for all user ratings and then perform some compu-

tations to get future predictions. The second group of algorithms first learn

descriptive models of users and/or items and based upon that they generate

recommendations. Model-based collaborative filtering algorithms are mem-

ory efficient, but time-consuming to build and update models. Memory-based

algorithms are usually more accurate than model-based algorithms, but they

are also more memory-consuming.

Memory-based Collaborative Filtering Algorithms

These algorithms utilize the entire user-item dataset to generate predictions.

They are divided into two groups: Item-based and User-based methods.
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User-based Algorithms These algorithms are predicting future ratings

for a given user by finding a set of users known as nearest neighbors that

have the most similar ratings to the target user.

Once when a set of the most similar users Ua for an active user a is found,

the predicted rating for an item j for the active user a is computed as

pa,j = v̄a + k
∑

i∈Ua

wusers(a, i)(vi,j − v̄i) (2.1)

In the previous equation, v̄a is the mean vote for the user a and k is a

normalizing factor such that the absolute values of weights sum to unity. The

mean vote is commonly used in these kind of computations to bring ratings

from all users on a same level. Some users tend to be more generous in rating

items, while other users tend to be more strict. The mean vote value is used

to remove these differences in rating levels for different users. The weights

wusers(a, i) measures similarity between the active user a and each user in

Ua. The next section explains common methods for computing wusers.

Computing User Similarities in User-based Collaborative Filtering

Two most common approaches for computing similarities between pairs of

users in user-based filtering are: correlation-based similarity and cosine sim-

ilarity.

Correlation-based Similarity Pairwise correlation-based similarity

between users in user-based collaborative filtering is computed by using the
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Pearson-r correlation. This correlation measure can vary in magnitude from

-1 to 1, with -1 indicating a perfect negative linear correlation, 1 indicating

a perfect positive linear correlation and 0 indicating no linear correlation be-

tween two variables. The general formula for computing Pearson-r correlation

between two variables X and Y that are given by a set of n measurements is

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(2.2)

where

x̄ =
1

n

n∑

i=1

xi, ȳ =
1

n

n∑

i=1

yi (2.3)

For computing Pearson-r correlation between two users a and b we first

must isolate Ic, a set that contains all items that are rated by the both users.

When we incorporate users data into the formula 2.2 (see [25]) we get the

formula for computing correlation-based similarity as:

wusers(a, b) =

∑
i∈Ic

(va,i − v̄a)(vb,i − v̄b)√∑
i∈Ic

(va,i − v̄a)2
∑

i∈Ic
(vb,i − v̄b)2

(2.4)

where v̄a and v̄b are mean vote values for users a and b.

Cosine Similarity This similarity measure is incorporated into col-

laborative filtering algorithms from information retrieval. In information

retrieval each document is represented as a vector with word frequencies,

and similarities between two documents or queries and documents are com-
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puted as cosine of the angle between two frequency vectors. In collaborative

filtering, each user can be represented as a vector of item ratings. Similarity

between two users is then computed as cosine of the angle between two rating

vectors. For two given users a and b and their corresponding sets of rated

items Ia and Ib respectively, the cosine similarity is expressed as:

wusers(a, b) =
∑

i

va,ivb,i√∑
k∈Ia

v2
a,k

∑
k∈Ib

v2
b,k

(2.5)

Item-based Algorithms These algorithms are exploring item to item sim-

ilarities to generate predictions for a given user. The item-based approach

looks into the set of items that the target user has rated and computes how

similar they are to a target item i, selects k the most similar items and based

upon their ratings generates a prediction for the given user and the item i.

For a given user a and item j the prediction is computed as:

p(a, j) =

∑
i∈Itopk

witems(i, j)va,i
∑

i∈Itopk
|witems(i, j)|

(2.6)

In the previous formula, |witems(i, j)| denotes the absolute value of witems(i, j).

Methods for computing witems(i, j) are described in the next section.

Computing Item Similarities in Item-based Collaborative Filtering

Three most common approaches for computing similarities between pairs of

items in item-based collaborative filtering are: Cosine similarity, Correlation-

based similarity and Adjusted Cosine similarity.
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Cosine Similarity This similarity measure is very similar to cosine

similarity measure in user-based collaborative filtering described earlier. For

two items a and b and corresponding sets of users that these items Ua and

Ub respectively, the cosine similarity is expressed as:

witems(a, b) =
∑

i

vi,avi,b√∑
k∈Ua

v2
k,a

∑
k∈Ib

v2
k,b

(2.7)

Correlation-based similarity For computing correlation-based sim-

ilarity between two users, Pearson-r correlation is used, similar to comput-

ing correlation-based similarities in user-based approach that was described

previously 2.8. If Uc is a set of users who rated both items a and b, the

correlation-based similarity between these two items is expressed as:

witems(a, b) =

∑
i∈Uc

(vi,a − r̄a)(vi,b − r̄b)√∑
i∈Uc

(vi,a − r̄a)2
∑

i∈Uc
(vi,b − r̄b)2

(2.8)

where r̄a and r̄b are mean vote values for items a and b.

Adjusted Cosine Similarity Computing pairwise item similarities by

using cosine similarity as described in 2.5 has one important drawback. Un-

like user-based collaborative filtering, where cosines of the angles between

vectors are computed for each two pairs of users, in this approach cosines

of the angles are computed between item vectors that contain ratings from

different users. Therefore, the simple cosine similarity formula in item-based

collaborative filtering is not taking into account the difference in rating scales
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between different users. Some users tend to generally give higher ratings for

all items, whereas some users tend to be more strict with their ratings. The

adjusted cosine similarity offsets this drawback by subtracting the corre-

sponding user average from each co-rated pairs of items. For given items

a and b and set of users Uc that rated the both items, the adjusted cosine

similarity is computed using the formula:

witems(a, b) =

∑
i∈Uc

(vi,a − r̄a)(vi,b − r̄b)√∑
i∈Uc

(vi,a − r̄a)2 −
∑

i∈Uc
(vi,b − r̄b)2

(2.9)

Model-based Collaborative Filtering Algorithms

In model-based collaborative filtering, a prediction for an item is computed

using a probabilistic approach, as a expected value given the ratings of items

that the user already rated. If we assume that a rating values are integer

numbers between 0 and m then the expected rating for a given user a and a

given item j is computed as:

pa,j = E(va,j) =
m∑

i=0

Pr(va,j = i|va,k, k ∈ Ia) (2.10)

where Ia is a set of all items that the user a has already rated. The next

two sections describe two methods for model-based collaborative filtering -

Bayesian Classifier Model and Bayesian Network Model.

21



Bayesian Classifier Model In the Bayesian classifier model [8], [21]

the main idea is to separate users in classes. Rather than predicting the

exact rating for a given item, this approach is trying to find which items

to recommend and which not to. Each class is defined with certain set

of preferences towards items. Given the class, the preferences towards the

various items are independent. The probability that a user belongs to a

class j, given his existing ratings (or feature values) is computed using the

standard “naive” Bayes formula:

p(C = j|f1, f2, ..., fn) = p(C = j)
n∏

i=1

p(fi|C = j) (2.11)

where both p(C = j) and p(fi|C = j) are estimated from training set con-

taining user ratings. To determine to which class the given user belongs to,

the probability of each class is computed and the user is assigned to the class

with the highest probability. Although the assumption that preferences are

independent given the class is sometimes unrealistic, this approach proved

to be very accurate in predicting new items, even in situations where this

assumption does not hold.

Bayesian Network Model In the Bayesian network model [8] entire

domain is represented as a Bayesian network with each node representing

each item in the domain. The states of each node correspond to the possible

rating values for each item. The “no vote” state is also included, where
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there is no interpretation for missing data. Each node has a decision tree.

Conditional probabilities for each node (item) are represented as a decision

tree. After the learning process is completed each item will have a set of

parent items that are the best predictors for a given node.

2.3 Hybrid Filtering

This type of information filtering combines resources of the both previously

mentioned approaches. The main objective of this approach is to overcome

some limitations imposed by either of the approaches. The following are

some systems that are filtering information using this approach.

FAB System The FAB system [3] is an adaptive web pages recommen-

dation service system that seeks to adapt to its users. It is a distributed

implementation of a hybrid system and it was developed at the Stanford

University. The Fab system consists of three parts – selection agents, col-

lection agents and central repository. Documents in this system as well as

users’ profiles are represented as vectors of their words using the Vector Space

Model (VSM) (see [26]). Each user is accompanied with a selection agent

that maintains the user’s profile. When a user requests a recommendation for

web pages, its selection agent sends a request to one of the existing collection

agents. The collection agent then tries to find top-k web pages in the central

repository that have the highest matching scores with the user’s profile. The
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matching function is a variant of the standard information retrieval cosine

measure between the vectors of pages and the user’s profile vector. After

the top-k web pages are presented to the user, he rates each page on the

scale from one to seven. After the user rated web pages, the selection agent

updates the user’s profile. The request-retrieval processes in this system use

methods and approaches from content-based information filtering. The col-

laborative filtering part of this system is implemented through a feature that

sends web pages that are highly rated by a user to its nearest neighbors.

Nearest neighbors of a user are defined as users that have profiles that are

most similar to the given user.

This thesis proposes novel approaches for filtering information using col-

laborative filtering methods. Like other collaborative filtering systems that

are described in this chapter (Ringo, MovieLens, GroupLens), our proposed

CF models and methodologies are using ratings given by a set of users to fil-

ter relevant information. However, unlike the previously mentioned systems,

our proposed approaches are different in the terms that they are neither

purely user-based nor item-based methods, but synergies of two. We are also

using novel mathematical models to represent ratings data from datasets,

that are, unlike approaches in these models, closely related to graph theory

approaches.
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Chapter 3

Collaborative Items Filtering

With Maximum User

Satisfaction - Models and

Heuristic Approaches

In this thesis a new framework, called collaborative partitioning, or CP for

short, is proposed. CP focuses on the problem of identifying item parti-

tions that optimize the fraction of users who will be satisfied with a given

partition. In contrast to traditional clustering, the proposed CP model is a

novel, bi-criteria optimization problem, which has a goal of finding the best

clustering that satisfies the most users at the highest level of satisfaction.

The CP framework proposed in this thesis considers two natural models for
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determining user satisfaction level with a given single partition.

The motivation for studying the collaborative partitioning problem comes

from analyzing some recommendation systems and working and analyzing

large data sets with preference data. StumbleUpon [29], one of the largest

social media websites on the Web nowadays is used to direct people to recom-

mend websites. As it was mentioned before, users can state whether they like

or dislike certain web pages by giving them “thumb-up” or “thumb-down”

ratings, or they can give no ratings to pages which means that they have no

opinion about a certain webpage. In many cases in this recommendation sys-

tem, topics that are recommended to a user sometimes are not a very good

match of the user’s interest. This problem indicates that topic hierarchies

have to be managed to better meet user needs, allowing them to more nar-

rowly define their topics interests. Collaborative partitioning would be very

helpful in finding future interesting topics for a user, based on his ratings

history.

The second motivating example of a motivation for this work grows out from

the experiments that we performed on the Netflix Prize database [23] of

user preference opinions about movies. In attempting to organize the set of

movies into segments and partitions we found that correlation values on pairs

of films in same (human-defined) categories were very widely distributed, and

in addition very little transitivity in correlation values was exhibited among

movies in same category. For example, we considered the correlations among
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ratings of movies categorized by one website as “Top 10 Word War II Films”

[16]. This set consisted of the following movies: 1. Saving Private Ryan,

2.Pearl Harbor, 3. Schindler’s List, 4.The English Patient, 5.Life is Beau-

tiful, 6.U571, 7.The Pianist, 8.Enemy at the Gates, 9.The Thin Red Line,

10.Patton. Through ad-hoc experimentation we found that a partitioning

of these items into {1,3,4,5,7,10} and {2,6,8,9} exhibited very high average

correlation values when measured over a large subpopulation of users. In this

thesis we are trying to focus on approaches of generating this kind of partition

automatically, by considering the application of expressed preference data in

the context of partitioning for the purpose of satisfying the most users. This

chapter introduces a novel formal framework for collaborative partitioning,

algorithms and analysis that demonstrate the potential and limits for solv-

ing these problems. We propose two models for collaborative partitioning,

analyze their computational complexities and propose heuristic algorithmic

approaches for these two models. At the end of this chapter, we demonstrate

experimental results with real data for these two models.

3.1 Related Work

The CP model is related to the problem of weighted graph clustering (see

[7]). A specific type of graph clustering, called correlation clustering, was in-

troduced in [4]. Correlation clustering considers a graph with edges labeled

from set {+,−}, and considers the problem of clustering to either maximize
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agreements, the number of + edges within clusters, plus the number of −

edges between clusters (or equivalently, minimizing the number of disagree-

ments). Similar to the approach in [4], there are several other papers that are

trying to improve constant-factor approximation algorithms for maximizing

agreements (see, [30, 11]).

However, the problem of clustering using a correlation measure, that is,

maximizing the sum of agreements minus disagreements appears to be more

difficult problem to approximate. Correlation clustering using a correlation

measure may be seen as comparable to our Collaborative Partitioning CP

problem, since we seek to measure the quality of a partitioning in terms

of a distance measure that involves the (sum of) positive and negative sat-

isfaction of individual users. In addition, our CP model differs from the

standard graph clustering and correlation clustering, in the sense that our

goal is a bicriteria optimization in which we seek the partitions that satisfy

a maximum number of users at the highest level. The CP model can also

be compared to biclustering, in which both users and items are clustered

simultaneously. However, traditional biclustering [31], [32] in collaborative

filtering applications have tended to focus only on positive preference data

and ignore negative preferences.
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3.2 Mathematical Notation and Formal Frame-

work for Collaborative Partitioning Mod-

els

Collaborative partitioning (CP) model of preference data consists matrix

M = [aij], where ai,j ∈ {−1, 0, 1}, and rows are indexed by n users U and

columns are indexed by m items I. Typically we have m < n. Here aij = +1

indicates a positive opinion by user i on item j, aij = −1 indicates negative

opinion, and aij = 0 indicates no opinion. The restriction we use simplifies

the presentation, and many of our results generalize to arbitrary values in

[−1, 1]. Also, in practice, the matrix M is chosen as a submatrix of a larger

preference data set.

In this work our goal is to partition the itemset I into two or more (non-

overlapping) segments P (I) = {I1, I2, . . . , Ik} such that a large fraction of

users are highly satisfied with one of the subsets Ii. The idea is that the

segment Ii can stand as a representative of user preferences. In typical ap-

plications, users could select the segment of the partition best meeting their

needs, or the segment of the partition could be determined automatically.

The overall goal of the partition would be to improve system performance

and user satisfaction. We now consider two models for quantifying the qual-

ity of given partitions. The first or A-model is focussed on creating partitions

that maximize the satisfaction of the most individual users. The second or
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B-model is focussed on creating partitions of items that are similar and well

correlated with respect to the preferences of a large fraction of users.

3.3 Two Models For Modeling User Satisfac-

tion

3.3.1 A-model of User Satisfaction

The A-model for CP measures the quality of partitions based on the number

of threshold-satisfied users. Each user’s preference data (stored as a row in

matrix M) is represented by a vector û of length m. For a given partition

P (I) = {I1, I2, . . . , Ik}, we let Îj be the vector of length m over ±1 represent-

ing the segment Ij, i.e., Îj(i) = 1 if i ∈ Ij and −1 otherwise. The dot product

û · Îj yields a count of the number of positive u-preferences minus the num-

ber of negative u-preferences in Ij plus the number of negative u-preferences

minus the positive u-preferences in complement Ic
j = I − Ij. We say a par-

tition P (I) of the itemset β-satisfies u if this dot product û · Îj ≥ β||û||2,

for some 1 ≤ j ≤ k. Here we take the Euclidean norm ||u|| =
√∑

u2
i . The

parameter β is used to represent the threshold specifying the required level

of user satisfaction, and represents the fraction of the user’s preferences that

are consistent with the partition.

Definition. An itemset partition P (I) = {I1, I2, . . . , Ik} induces (α, β)-

satisfaction in the A-model (for some 0 < α, β ≤ 1) if P (I) β-satisfies at
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least α|U | users.

With this definition we have the associated bicriteria optimization prob-

lem, which seeks to find the partition that optimizes (α, β)-satisfaction. In

the A-model the number of segments/clusters k is not an issue for the bicri-

teria optimization and will be selected automatically.

3.3.2 B-model of User Satisfaction

In this model the quality of partitions is measured by focusing on correlation

clusterings of items, which uses a benefit-measure based on items similarity

(or correlation) exhibited by each cluster with respect to large numbers of

user preferences. The B-model uses graph clustering and a natural, parame-

terized cost model. We consider the family of weighted graphs G = {GU ′} on

the same set nodes representing the itemset I; and for each subset of users

U ′ ⊆ U there is a graph GU ′ in the family where weights on the edges are

given by correlation values between items, where the correlations are calcu-

lated by restricting to U ′ data. In general, for the B-model, it is reasonable

to choose any vector similarity measure, but we focus on cosine similarity for

sake of concreteness. Given two column vectors ci, cj of M , and a subset U ′,

we let simU ′(i, j) be the cosine similarity measure of the two column vectors

restricted to the rows of U ′. Hence, for the graph GU ′ the edge (i, j) has

weight simU ′(i, j).

We use a natural cost model for the partitioning problem on each GU ′ ,

where there is a positive benefit equal to the weight of a positive edge if it lies
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within a cluster, and induces a negative benefit otherwise, and vice versa for

negatively weighted edges. The objective here is to find a subset U ′ of suffi-

ciently large size, such that the graph GU ′ can be partitioned with maximum

benefit - maximizing the positive correlation among items within clusters

and negative correlation among items between clusters, and minimizing the

reverse.

Definition. An itemset partition P (I) = {I1, I2, . . . , Ik} induces (α, β)-

satisfaction in the B-model (for some 0 < α, β ≤ 1) if there exist a set U ′ ⊂ U

of rows where |U ′| ≥ α|U | such that the weighted graph GU ′ when partitioned

according to P (I) has total benefit at least β
(|I|

2

)
, i.e., the average benefit

per edge is at least β.

For sufficiently large values α, β, a partition P that induces (α, β)-satisfation

in the B-model identifies a large subpopulation of users for which the pairwise

similarity values of items are consistent (on average) with the partitioning.

Like the A-model, in this B-model of CP the number of segment/clusters k

is an not an important consideration, and will be chosen automatically.

3.4 Computational Complexity

This section discusses computational complexity of CP in A-model and B-

model. It can be proved that the decision problems associated with both

A and B models of CP are NP-complete. The proofs are based on showing

that solutions for the both problems are verifiable in polynomial time, as
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well as the optimization problems for the both models are NP-hard. That

can be proved by showing that the CP problem for (α, β)-satisfaction in

the A-model and the B-model are different generalizations of the correlation

clustering problem, which is shown to be NP-complete in [4].

Theorem 3.1. The CP problems of optimizing (α, β) - satisfaction in the

A-model and optimizing (α, β)-satisfaction in the B-model are both NP-Hard.

The problems remain so for the restricted case where β = 1 in the A-model,

and for the restricted case where α = 1 in the B-model.

Proof. The NP-hardness of optimizing (α, β)-satisfaction in the A-model and

B-model can be proved by reducing the correlation clustering problem to CP

partitioning in both the A- and B- models.

For reducing the correlation clustering problem to the CP problem in

the A model, we take an arbitrary instance of a correlation clustering prob-

lem, which is a graph with edges labeled with {+,−}. This input graph

is transformed to an instance of an A-model CP problem by applying the

next reduction. We represent the input graph by a matrix M that has rows

indexed by the edges and columns indexed by the nodes of the input graph.

For each edge labeled with +, we create a row in the matrix M with both

associated columns set to +1, and all other values set to 0. For each edge

labeled with −, we create a row in the matrix M with labeling one of the

associated columns with +1, the other with −1, and setting all other values

to 0.

For any partition of the columns, we can see that a row in the M matrix
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is 1-satisfied if and only if the associated edge is in agreement with a given

partition. If f is a number of edges in M that are 1-satisfied with a given

partition, then α = f/|E| fraction of edges are in the agreement with a given

partition if and only if the partition yields (α, 1)-satisfaction in the A-model.

The correlation clustering problem can be reduced to CP partitioning in the

B-model by using the same reduction. In a previously constructed matrix

M it holds that a cosine between any pair of columns is 1 if and only if the

edge associated with the corresponding pair of nodes is labeled +, and it is

−1 otherwise. Therefore, the +1- weighted sums of the dot products over

all pairs on columns is the sum of the agreements minus disagreements in

the correlation clustering graph. So the correlation clustering reduces to the

problem of finding beta-maximizing (1, β)-satisfaction in the B-model.

The next theorem is discussing a computational complexity of finding

subsets of users that yield high correlation values in CP.

Theorem 3.2. The problem of finding a subset U ′ ⊂ U of rows where |U ′| ≥

α|U | such that the weighted graph GU ′ (as defined above) edge weights at least

β is NP-Hard.

Proof. To prove this theorem, we take an arbitrary instance of the k-Independent

Set problem with G = (V, E), n = |V | and m = |E|. Without loss of general-

ity we can assume that k = n
2 > 3. We transform this input into a n×(m+n)

matrix M that has rows indexed by the nodes in V and columns indexed by

nodes and edges in G. for each entry of M, we set Mij = −1 if the node i ∈ j,
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in a case when j is an edge, or i = j, in a case where j is a node. Otherwise,

we set Mij = 1. The claim is that G has a k-Independent Set if and only if

the matrix M has k rows such that the minimum pairwise cosine similarity

is at least (k−4)
k = 1− 4

k .

We can observe that, if G has a k-Independent Set, then the rows in M cor-

responding to the nodes in IS in G have a property that each column vector

reduced to these rows in M has at most one −1 entry. Therefore, any pair of

columns reduced to the previously mentioned row set has at most two row

indices with opposite values. So the cosine similarity between each two pairs

of columns is at least
∑(k−2)

i=i 1∗1+1∗(−1)+1∗(−1))
k = (k−4)

k .

Conversely, assume that M has k rows that have the minimum pairwise cosine

similarity is at least (k−4)
k . Assume also that this set does not correspond to a

k-Independent Set in G, i.e there are two rows in this set that correspond to

nodes u and v that share an edge e. The column for the edge e in M reduced

to the previously described k rows has two −1 values. Therefore, the cosine

similarity between this column and any other column that corresponds to w,

w (= u, v has value at least
∑(k−4)

i=1 1∗1+1∗(−1)+1∗(−1)+1∗(−1)+1∗(−1)
k = (k−6)

k which

is in the contradiction with the starting assumption.
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3.5 Heuristic Approximations for Solving CP

Problems

In the section 3.4 it was shown that, in general, CP problems are NP-

hard. Therefore, CP applied on large sized problems should be considered

intractable and not scalable. To be able to find approximate solutions for

our proposed CP models, we examined some heuristic approaches that give

approximate solutions in polynomial time. This section gives details about

our proposed heuristic approximations for CP problems.

In our proposed heuristic approach for approximating CP solutions, we

start with a polynomial size family P of partitions that can potentially yield

approximately optimal results. Many clustering methods on weighted graphs

are available, and it is not clear at this point which method or methods are

to be preferred; hence, for our purposes we try all reasonable methods based

on similarity clustering, and attempt to determine which is optimal or nearly

so.

Once given a family of partitions P we proceed as follows. For an instance

of the A-model CP problem, we will simply count the number of rows that are

β-satisfied for each partition in the family of partitions P , and then output

the partition that yields the best result.

For an instance of the B-model CP problem we have a more complex

problem to solve since deciding which rows to use in calculating the satis-

faction is not immediate, as they are not independent decisions (previous
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decisions affect all future decisions). We chose to take a greedy approach to

deciding which set of rows to use. We begin with all rows and then remove

the row that best improves the overall cost benefit. We iteratively repeat

this greedy process until no such row can be found, or if the α threshold has

been reached.

3.5.1 Methods for Generating a Family of Partitions

In our experiments we considered the generation of a family of partitions

given by the approaches in Hierarchical Agglomerative Clustering (HAC).

These agglomerative algorithms are used frequently in practice, and can

easily and efficiently create families of partitions. The motivation behind

using HAC methods to create families of partitions is that these methods

hierarchically and gradually create clusters of items, based upon their simi-

larity, and our intuition is that one partition among created families of par-

titions can be a very good starting point in our heuristic approach. We

considered six different HAC methods in our experiments:Single Linkage

Method, Average Linkage Method, Complete Linkage Method, Weighted Av-

erage Linkage Method, Centroid Method and Median Method. We chose

these six methods because these are all existing HAC methods that are

agreeable with the cosine similarity measure that is used in the clustering

process. HAC algorithm works as follows (see 3.1 ): It finds the clos-

est two segments Ii and Ij, it merges them and then it updates distances
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Algorithm 3.1 Basic agglomerative clustering algorithm for generating fam-
ily of partitions
1: INPUT: n×m-matrix of preference data M
2: OUTPUT: A family of partitions P of the columns
3: Let P = [{1}, {2}, . . . , {m}] be the finest partition containing m cluster

segments
4: Add copy of P to P
5: Compute the m × m inter-cluster distance matrix D by using cosine

similarity measure for each pair of columns in M
6: while P has more than one segment do
7: Find closest pair of segments Ii, Ij in P
8: Merge Ii and Ij into one segment in P
9: Add P to P

10: Compute the distance between the new cluster segment Ii + Ij and all
other segments

11: Add the new row for Ii+Ij and delete the rows and columns associated
with Ii, Ij from D

12: end while
13: Return family of partitions P

between a new segment Ii + Ij and any other remaining segment. The dis-

tance is computed using four weight parameters: (δ1, δ2, δ3, δ4) as follows:

d(Ii + Ij, S) = δ1d(Ii, S) + δ2d(Ij, S) + δ3d(Ii, Ij) + δ4|d(Ii, S)− d(Ij, S)|. For

different HAC methods, the weight parameters are computed differently:

• Single Linkage Method uses (1/2, 1/2, 0,−1/2)

• Complete Linkage Method uses (1/2, 1/2, 0, 1/2)

• Average Linkage Method uses (1/2, 1/2, 0, 0)

• Weighted Average Linkage Method uses ( |Ii|
|Ii|+|Ij | ,

|Ij |
|Ii|+|Ij | , 0, 0)

• Centroid method uses ( |Ii|
|Ii|+|Ij | ,

|Ij |
|Ii|+|Ij | ,−

|Ii||Ij |
|Ii|+|Ij | ,−

|Ii||Ij |
(|Ii|+|Ij |)2 )
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• Median method uses (1/2, 1/2,−1/4, 0)

Each HAC method generates m − 1 partitions of an m-item set, as de-

scribed in 3.1. By using a priority queue to extract the closest pair, the

time total complexity is therefore O(m2 log m) in the worst case. This fol-

lows since updating the distance matrix takes O(1) time for each remaining

segment. However, in some cases it may be possible to use a more effective

data structure to reduce the time complexity.

3.5.2 A-model Algorithm

The running time for the A-model algorithm is bounded by the time it takes

to generate the family of partitions P plus the time it takes to process each

of the partitions. For each of the partitions under consideration we process

each row to determine whether it is β-satisfied. This function takes time

O(m). Hence, assuming, as above, that the partitions can be generated in

O(m2 log m), the total time complexity is O(m2 log m + nm2).

3.5.3 B-model Algorithm

Similar to the algorithm for the A-model, the running time for the B-model

algorithm is bounded by the time it takes to generate the family of partitions

P plus the time it takes to process each of the partitions in the family.

However, the B-model algorithm is little more complicated, for each of the
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partitions under consideration we greedily determine the set of rows over

which to calculate the cost benefit of the partition. In each iteration of this

greedy operation we must consider each row and compute the cost benefit

induced by the removal of the row. Once the partition that maximizes the

benefit for a given α (over all partitions) is computed, the β satisfaction can

be computed using the definition for the (α, β)-satisfaction in the B-model

as MaxBenefit = β
(|I|

2

)
, where I is the set of items we are partitioning.

It easily follows that to process each partition the algorithm above takes

time O(nm2). Hence, assuming, as above, that the partitions can be gener-

ated in O(m2 log m), the total time complexity is O(m2 log m + nm3).

3.6 Applying Collaborative Partitioning Method

to Produce Top-K Item Recommendations

In this section we propose approaches for applying our proposed CP frame-

works for building top− k recommendation systems. The top− k recommen-

dation algorithms in collaborative filtering are designed to answer top − k

queries. For a given user a and, given set of items Ia and a given non-

negative number k, the top − k recommendation algorithms are trying to

find a set of up to k items that have not yet been rated by the user a, but

are most likely to receive the highest rankings and to be highly preferred by

the given user among all items that the user has not yet rated. The order
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of the items reflects the probability of the user’s preference towards these

items – the higher position an item has in a top− k recommendation list, it

is more likely to be preferred compared to some other items that are ranked

lower in the same list. Our framework for applying the CP approaches for

top− k recommendation purposes is still in the developing phase. So far, we

designed and evaluated our top− k recommendation algorithm based on the

CP approaches proposed in the B-model that was described in 3.3.2.

Our top − k recommendation algorithm takes clusters of users produced by

the B-model algorithm given in last section.

The input of our top− k recommendation algorithm is the training user-

ratings matrix, the testing user-ratings matrix, minimal percentage of tar-

geted users minu, the minimal users satisfaction that has to be achieved in

the produced clusters minsat, and the number of the nearest user. The train-

ing user-ratings matrix is a matrix that contains incomplete user ratings, i.e.,

some of the ratings are known but removed from this matrix for the purpose

of testing the accuracy of the produced recommendations. The testing user-

ratings matrix contains complete data and is used for evaluating accuracy of

our top − k recommendation approach. We iteratively apply the CP algo-

rithm for the B-model as long as this algorithm produces new clusters with

the β satisfaction above the threshold satisfaction value minsat and as long

as there are any users left to be clustered, as described in the Algorithm 3.4.

After we obtained the clustering for the training data, we produce top − k

recommendations for the users and missing items and compare the results
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with the testing data. We produce the top− k recommendation list for each

user a and set of the user’s missing items Ima, by allocating the cluster the

current user belongs in, finding s nearest users to the given user (using the

cosine similarity on the vectors of users), and then, for each missing item i

of the user a we compute sum of ratings given for that item by the user’s

nearest neighbors. After we apply these steps for all missing items for the

user a, we order items by the computed sums in descending order, and rec-

ommend the top − k items with the positive rating sums. Detailed steps of

the recommendation algorithm are given in the Algorithm 3.5.

The clusters produced by the CP methods are able to speed up the rec-

ommendation process significantly, since they group similar users into same

clusters. Therefore, when we are searching for nearest neighbors for a given

user in our recommendation algorithm described in 3.5, we are searching

only through the users that are located in the same clusters with the given

user.
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Algorithm 3.2 Algorithm for maximum user satisfaction in the A-model of
CP
1: INPUT: n×m-matrix of preference data M ; the threshold value β > 0.
2: OUTPUT: A partition P ∈ P to optimize the number of rows that are

β-satisfied.
3: Generate a family P of partitions of the m columns. (As illustrated in

Algorithm 1.)
4: Let BestPartition= []
5: Let MaxSatCount=0
6: for all partitions P = {I1, I2, . . . , Ik} ∈P do
7: Pcount=0 // counts number of β-satisfied users
8: for all row vectors û of M do
9: MaxSat[u] = 0

10: for all 1 ≤ j ≤ k do
11: // Find the segment-vector Îj that maximizes satisfaction of u
12: Calculate the dot product p = û · Îj

13: if (p >MaxSat[u]) then
14: MaxSat[u] = p
15: end if
16: end for
17: if ( MaxSat[u]> β) then
18: Pcount = Pcount +1
19: end if
20: end for
21: if (Pcount > MaxSatCount) then
22: MaxSatCount =Pcount
23: BestPartition = P
24: end if
25: end for
26: Return BestPartition
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Algorithm 3.3 Algorithm for maximum user satisfaction in the B-model of
CP
1: INPUT: n×m-matrix of preference data M ; the threshold value α > 0
2: OUTPUT: A Partition P ∈ P, so as to optimize the β value, so that P

is an (α, β)-satisfying partition.
3: Generate a family P of partitions of the m columns. (As illustrated in

Algorithm 1.)
4: Let BestPartition= []
5: Let MaxBenefit=0
6: for all partitions P = {I1, I2, . . . , Ik} ∈P do
7: for all pairs of columns i < j do
8: calculate wij = cosine similarity of columns i and j of M
9: if pair i, j are in same segment Is of P then

10: wij is in set of Inter-Cluster-Weights
11: else
12: wij is in set of Intra-Cluster-Weights
13: end if
14: end for
15: P-CostBenefit= Σ Intra-Cluster-Weights - Σ Inter-Cluster-Weights
16: while there remains at least αn rows of M and the selected maximum

P-BenefitChange[u] > 0 do
17: for all rows u of M do
18: determine the P-BenefitChange[u] that incurs when the sums of

Intra-Cluster-Weights and Intra-Cluster-Weights change resulting
from removing u from M

19: end for
20: Greedily select and remove row u from M for which P-

BenefitChange[u] is maximized
21: if (the selected maximum P-BenefitChange[u] > 0) then
22: Add P-BenefitChange[u] to P-TotalBenefit
23: end if
24: end while
25: if ( P-TotalBenefit > MaxBenefit) then
26: MaxBenefit = P-TotalBenefit
27: BestPartition=P
28: end if
29: end for
30: Return BestPartition
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Algorithm 3.4 User clustering algorithm based on the B-model CP
1: INPUT: n × m-matrix of preference data M ; the threshold satisfac-

tion value minsat > 0; the minimal percentage of the targeted users
minu;method m of HAC;

2: OUTPUT: Clusters of users with similar agreements on CP items
C1, ...Cm

3: Usersunclustered = M ;
4: Clusterscounter=0;
5: while there remain unclustered users and produced β-satisfaction

Satcurrent > minsat do
6: Generate family of partitions P= HAC(Usersunclustered)
7: Percentcurrent = minu

8: (Userssatisfied, Satcurrent) = ModelB(Usersunclustered, P, Percentcurrent·
n)

9: while Satcurrent < minsat do
10: Percentcurrent=Percentcurrent − 1
11: (Userssatisfied, Satcurrent) = ModelA(Usersunclustered, P, Percentcurrent·

n)
12: end while
13: Clusterscounter = Clusterscounter + 1
14: C[Clusterscounter] = Userssatisfied

15: Usersunclustered = Usersunclustered

⋂
Userssatisfied

16: end while
17: Return clusters C
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Algorithm 3.5 Top-k recommendation algorithm based on clustering pro-
duced by the B-model
1: INPUT: Clusters of users with similar agreements on CP items C1, ...Cm

from algorithm 3.4;sets I1,I2,...,Ik that contain missing items ratings for
users U1,...Uk;value k;number s of nearest users

2: OUTPUT: for each user Ui from the input, the top− k recommendation
items list of the length k

3: for all users Ui do
4: Let recommendi={}
5: for all items ij in Ii do
6: votej = 0
7: for all nearest neighbors Uni in the set of s nearest neighbors for Ui

do
8: votej = votej + rating(Uni, ij)
9: end for

10: Add votej in recommendi

11: end for
12: Sort items in recommendi in descending order
13: Recommend top−k or less items from recommendi that have a positive

score
14: end for
15: Return collection of recommend sets
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Chapter 4

Collaborative Items Filtering

With Maximum User

Satisfaction - Example Results

with a Real Dataset

In this chapter we present the results that we obtained after running proposed

heuristic approaches for the A- and B-model and the top−k recommendation

approach on real data. By applying the previously mentioned approaches on

real data, we wanted to test the next features:

• How changes of one parameter (α or β) affect the other one, in the

models A and B. We would like to see, for the particular dataset we
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are experimenting with, what are the maximal α-fractions of β-satisfied

users for given values of β (in the A model), and for given desired α-

fractions of users, what are maximum β-satisfaction values that we can

achieve (in the B-model).

• How much the best partitions computed using algorithms for the A

and B models are similar to a human-generated genre partition of given

items. In this particular experiment, our dataset consists of users pref-

erence data for a given set of movies from different genres. So we would

like to see how far are the best partitions obtained from the algorithms

for the A and B models from a genre partition, where movies (items)

are classified according to their genres. Our assumptions are that the

proposed heuristic algorithms are able to remove noise from the dataset

and to create partitions that are relatively close to the genre partition.

• How the various proposed HAC methods perform for a particular dataset

we are experimenting with.

• Examine whether heuristic approaches for the A and B model are find-

ing significant and meaningful item partitions (if they exist). So we

would like to test what kind of partitions our proposed algorithms

are finding on randomly generated dataset and compare these results

against results obtained on a real dataset.

• We would like to evaluate the quality of top− k recommendations cre-
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ated with our proposed recommendation algorithm and how they com-

pare in contrast with some other recommendation algorithms.

For our experimental setup, we chose a subset of the recently released Net-

flix movie reviews. This set contains around 100000000 ratings for movies,

on the scale from 1 to 5. Because in our approach we are dealing with more

simple, {1,-1,0} ratings, we translated the ratings from the 5 scale to posi-

tive and negative ratings. From this dataset, we chose a subset that contains

ratings for randomly chosen 23 movies that belong to three different gen-

res – movies about James Bond 007, movies that are directed by Woody

Allen and black and white movies. The chosen subset contains ratings from

1429 users, who rated at least 15 out of 23 randomly chosen movies. Movies

that are chosen belong to the three major topics – black and white movies,

movies directed by Woody Allen and movies about James Bond, the 007

agent. The titles of the 23 movies that we chose are given in the table 4.

Each movie belongs to one of the previously mentioned, human-defined top-

ics:movies either written or directed by Woody Allen {1,2,3,4,5,6,7,8}, black

and white movies {17,18,19,20,21,22,23} and movies about 007 agent, James

Bond {9,10,11,12,13,14,15,16}. Some of the movies in the first group can be

also put in the second group, because they are also black and white moves.

From this dataset we created preference partitioning P by applying the algo-

rithms described in the A-model and B-model on a family of initial partitions

produced by six different Hierarchical Agglomerative Clustering methods -

Single Link, Average Link, Weighted Average Link, Complete Link, Median
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and Centroid. We ran two sets of experiments for each model. One set of

experiments measured α-percentage of β-satisfied users in the both models,

for partitioning produced by six different HAC methods. The second set of

experiments measured Jaccard error distance between produced partitioning

in each model and the human-based genre partitioning that was listed in the

table in 4. Jaccard error distance between two item partitions Pa and Pb is

defined as:

ErrorJaccard(Pa, Pb) =

∑
Ii∈Pa

MinIj∈Pb
(1− |Ii∩Ij |

|Ii∪Ij |)

|Pa|
(4.1)

We can see from the formula 4.1 that, if we replace Pa with a human-

generated partition and Pb with any produced partition that Jaccard error

distance is simply the average Jaccard distance of each of the segments in

the human-generated partition from optimally chosen segment in the given

partition.

We also ran the same sets of experiments for randomly generated data, to

be able to determine whether our methods are finding statistically relevant

segments and partitioning.
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Table 4.1: Human-based genre partitioning of the experimental itemset
Woody Allen Movies
1.“Love and Death”, 2.“Mighty Aphrodite”,
3.“The Curse of the Jade Scorpion”, 4.“Annie Hall”,
5.“Deconstructing Harry”, 6.“Hannah and Her Sisters”,
7.“Crimes and Misdemeanors”, 8.“Manhattan”,
Movies about James Bond
9.“GoldenEye”, 10.“Tomorrow Never Dies”,
11.“Die Another day”, 12.“The Spy Who Loved Me”,
13.“The World is Not Enough”, 14.“Licence to Kill”,
15.“The Living Daylights”, 16.“For Your Eyes Only”
Black and White Movies
17.“Lenny”, 18.“The Last Picture Show”,
19.“Paper Moon”, 20.“Psycho”,
21.“The Best Years of Our Lives”, 22.“Some Like It Hot”,
23.“From Here To Eternity”

4.1 Results for the A-model

In running experiments for the A-model, we followed steps of the algorithm

described in the Algorithm 3.2. Input value for the algorithm was β parame-

ter, and then we measured percentages of the β-satisfied users and Jaccard er-

ror distance from the genre partitioning for families of partitions produced by

each of the six different hierarchical agglomerative clustering methods listed

above. The Figure 4.1 describes experimental results for (α, β)-satisfaction

in the A-model. As we can see from the Table 4.1 and the Figure 4.1 the

best partition for all α and β values is partition {9, 10, 11, 12, 13 14, 15,

16} {3} {1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}. This partitioning is

produced by applying the A-model algorithm on the partitions produced by

Single Link and Centroid HAC. If we look at different segments in the parti-
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Figure 4.1: (α, β)-satisfaction results in A-model

tion, we can see that all movies about James Bond are in the same segment.

That means that, in our data set, majority of the satisfied users agreed on

their preference opinion about these movies. The second large segment in

this partition is the segment { 1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}.

This segment contains together all black and white movies and all but ex-

cept one movie from Woody Allen movies group. From that segment we can

conclude that for the majority of satisfied users agree about their preference

opinion about these movies (they like or dislike them in the same way). If we

analyze the Figure 4.1, we can notice that partitions produced by all HAC

methods follow a same trend – the higher β-satisfaction requirement will pro-

duce smaller clusters. For β value of 0.8 we can see from the figure that only
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Figure 4.2: Measured error distance between produced preference partitions
and the genre partitioning for the A-model

10 percent or less users are going to be 0.8 satisfied with a given partition.

However, users in those types of clusters tend to be much more similar in

taste to each other than users in clusters that are only 0.2 or 0.4 satisfied.

In the Figure 4.1 we also included experimental results that we obtained by

applying our algorithm on HAC partitions applied on randomly generated

data. We included only results produced by applying the A-model algorithm

on partitions produced by applying Average Link HAC on the random data,

since that particular HAC partitioning gave the highest (α, β)-satisfaction

for the random data. As we can see from the Figure 4.1, α-percentage of

β-satisfied users on randomly generated data is significantly lower compared

to the same results for Netflix movie ratings data. That shows us that, re-
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Table 4.2: Best partitions found in experiments for the A-model
β max α% HAC Method Best Partition
0.2 80.34 Single,Centroid {9, 10, 11, 12, 13 14, 15, 16}

{3}
{1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}

0.4 59.76 Single {9, 10, 11, 12, 13 14, 15, 16}
{3}

{1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}
0.6 27.08 Single,Centroid {9, 10, 11, 12, 13 14, 15, 16}

{3}
{1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}

0.8 10.29 Single,Centroid {9, 10, 11, 12, 13 14, 15, 16}
{3}

{1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}

garding the Netflix data, we are getting meaningful partitions that are able

to satisfy much higher percentage of users compared to randomly generated,

genre non-biased data.

The Figure 4.2 describes experimental results for the Jaccard error dis-

tance between partitions produced by the A-model algorithm and the human-

based genre partitioning described in the Table 4. As we can see from the

Figure 4.2, the minimal error distance from the human-based genre par-

titioning has the preference partitioning produced by applying the A-model

algorithm on the HAC Weighted Average Link and HAC Centroid partitions.

As we can see from the chart, the error is relatively constant for different val-

ues of β as long as β < 0.8. When β reaches the maximum value, the error

distance for the partitioning produced by HAC Complete Link significantly
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increases. That is due to the fact that the preference partitioning for the max-

imum β satisfaction value for this partitioning method partitions all movies

into the same segment and gives us a trivial partition for β = 0.8. From this

figure we can also notice that partitioning produced on randomly generated,

non-biased data will have a significantly higher Jaccard error distance from

the human-based genre partition. That tells us that in the Netflix movie rat-

ings database there exists a bias towards partitioning preference to certain

groups of movies according to their genres.

4.2 Results for the B-model

In running experiments for the B-model, we followed steps of the greedy algo-

rithm described in the section 3.3. In this case, input value for the algorithm

was α parameter. For different values of α and families of partitions pro-

duced by the six different hierarchical agglomerative methods, we computed

subsets of users of size at least αn that maximize the average cost benefit per

edge β. We did that over all families of partition, and chose a partition and

subsets of users within αn boundaries that produces the maximum average

β-satisfaction per edge,which is computed as β = 2MaxBenefit
|I|(|I|−1) .

As we can see from the Figure 4.3 for smaller values of α, the β values are

higher. This is because, the more rows we remove for a good partition, the

more likely we are to increase total benefit in each step, yielding the higher
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Figure 4.3: (α, β)-satisfaction results in B-model

average edge benefit β. The more users we remove for a good partition, the

more likely we are to remove more noise from our data, therefore getting a

very high level of the β satisfaction. For α values of 0.4n, 0.6n and 0.8n, we

can see that all HAC methods yield very similar β values, and for lower values

of α we can see that HAC Average Link method finds a partition that yields a

little bit higher β-satisfaction,compared to other HAC methods. Similarly to

experiments for the A-model,in the Figure 4.3 we also included experimen-

tal results that we obtained by applying our algorithm on HAC partitions

applied on randomly generated data. We included only results produced by

applying the B-model algorithm on partitions produced by applying Average

Link HAC on the random data, since that particular HAC partitioning gave
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Table 4.3: Best partitions found in experiments for the B-model
max β α% HAC Method Best Partition
0.3085 20.00 Average {1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}

{3, 9, 10, 11, 12, 13 14, 15, 16}
0.1797 40.00 Single, Centroid {1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23}

{3}
{9, 10, 11, 12, 13 14, 15, 16}

0.1286 60.00 Single {1}{19}{3}{4, 8}{11}{6}{21, 23}{10, 13}
{17}{7}{2, 5}{14, 15}{12, 16}{9}{18}{20,22}

0.0863 80.00 Centroid {1}{18, 19}{3}{4, 8}{11}{6}{21, 23}{10, 13}
{17}{7}{2, 5}{14, 15}{12, 16}{9}{20,22}

the highest (α, β)-satisfaction for the random data. As we can see from the

Figure 4.3, α-percentage of β-satisfied users on randomly generated data

is significantly lower compared to the same results for Netflix movie ratings

data. That shows us that, regarding the Netflix data, the B-model algorithm

gives us meaningful partitions that are able to satisfy much higher percent-

age of users compared to randomly generated, genre non-biased data. If we

analyze data in the Table 4.2 we can see that the best partitions for higher

values of α (0.6 and 0.8) contain many small segments. These partitions

yield relatively small β-satisfaction. For higher values of β-satisfaction the

produced segments there are two partitions that maximize the average cost

benefit per edge β, P1 ={{ 1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23},{3,

9, 10, 11, 12, 13 14, 15, 16}} and P2 ={{1, 2, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21,

22, 23}, {3},{9, 10, 11, 12, 13 14, 15, 16}}. These two partitions, similarly

to the partitioning in the A-model, groups all black and white and all except

one Woody Allen movies into one segment, and all James Bond movies into
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Figure 4.4: Measured error distance between produced preference partitions
and the genre partitioning for the B-model

another segment. The item number 3 is relatively misplaced for the both

partitions. It is a Woody Allen movie, but in the first partition it is classified

into the James Bond movies segment, and in the second partition it is classi-

fied as a separate segment. When we analyzed ratings data available for this

movie, we have noticed that there are many ratings missing for the movie

(the ratings vector is relatively sparse). So we are assuming that the lack of

ratings is the main reason of misplacing this item into the wrong segments.

As we can see, for higher values of β-satisfaction, partition into segments

tends to be closer to genre-based segmentation.

In the second sets of experiments for the B-model we measured tradeoffs
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between the level of satisfaction β and the Jaccard error distance between

produced preference partitioning and the human-based genre partitioning

described in the Table 4. The smaller α values produce smaller cluster with

higher β-satisfaction. Therefore, for the smaller values of α (0.2 and 0.4) the

Jaccard error distance between the generated partitions and the genre-based

partition is smaller for all HAC methods, compared to the Jaccard errors

produced by partitions for higher α values. That is due to the previously

mentioned observation that, for smaller values of α the B-method tends to

produce partitions that are much closer to the human-based genre partition.

Higher values of α produce partitions that are not very related to the genre

partition, and therefore, they yield higher error distance from the genre par-

tition. As we can see from the Figure 4.4, for the smaller values of α,

partitions produced by Median HAC significantly under perform other HAC

methods. For higher values of α (0.6 and 0.8) partitions produced by Com-

plete Link HAC significantly outperform other HAC partitioning methods.

In this figure we also included the measured Jaccard error distance between

partitions produced on a randomly generated data and the genre partition.

As we can see from the Figure 4.4, for the smaller values of α and higher val-

ues of β, Jaccard error distance between partitions on random data and the

genre partition is much higher compared to the HAC methods applied on the

Netflix data. For smaller values of α and higher levels of the β-satisfaction,

all except one HAC methods produced significantly smaller Jaccard error

distance from the genre partition, compared to partitions produced on the

59



random data. For higher values of α, the induced partitioning created much

smaller β-satisfaction and under preformed in the terms of Jaccard error

distance, compared to the random data. So we can see that, for the small

values of α, in the clusters that have a higher average cost benefit per edge,

β, the partitioning produced by the B-model algorithm is very close to the

genre partitioning. However, for large values of α, where the β-satisfaction

becomes very low, the produced partitioning is not much different from the

partitioning on the random, genre un-biased data.

4.3 Results for Top-k Item Recommendation

For testing performance of the top− k recommendation algorithm proposed

in 3.5, we split our experimental data into the training and testing part.

The training part contains around 90% of the all ratings from the chosen

Netflix data subset described at the beginning of this chapter, and 10% of

the ratings are removed and put into the testing data set.

We ran the set of experiments on the Netflix data, as described before, to

test the quality of recommendations produced by our recommendation algo-

rithm. As it was mentioned before the experimental dataset is split into two

parts – the training set containing 90% of all ratings at the testing dataset

containing the remaining 10%. The quality of the produced recommenda-

tions is compared to the top−k recommendation algorithm produced by the
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Nearest Biclusters Algorithm described in [31]. This algorithm is based on

the biclustering process that is taking into account both users and items in a

ratings data set. This algorithm uses binary data and keeps track only of the

items that a given user likes (they have value 1) and all other items are con-

sidered as missing values (have value 0). The inputs for these algorithms are

the minimum number of neighbors n and the minimum number of items k in

a bicluster. It was reported in [31] that the Nearest Biclustering Algorithm

exhibits the best behavior for n = 4 and k = 10, so we ran this algorithm

with these parameters.

The quality of recommendation is measured by F1 value, which is very

common measure in information retrieval. The F1 measure is given as

F1 =
2 · recall · precision
recall + precision

(4.2)

The recall and precision are given as

recall =
hits

itemsrelevant
(4.3)

precision =
hits

itemsrecommended
(4.4)

where hits is the number of correct recommendations, itemsrelevant is the

number of all possible items that can be recommended for a give user and

itemsrecommended is number of items recommended to a user.
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Figure 4.5: Quality of recommendations in the B-model based Top-k recom-
mendation algorithm and the Nearest Biclustering based on Bimax

The experimental results from the Figure 4.5 show that, for all sizes of

neighborhood, our top − k recommendation approach outperforms the one

given by the Nearest Biclustering Algorithm. We can also see that, for the

neighborhood size of 10, our algorithm has the best F1 value. It means

that, in our case, the ten closest neighbors might be the most relevant in

making recommendation for missing ratings. Adding more than 10 neighbors

into consideration when making recommendation can add more noise than

relevant information.

4.4 Conclusion

In this thesis chapter we proposed a new collaborative filtering framework

called the collaborative partitioning (CP) and the bi-criteria optimization
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problem related to it. We introduced two models for evaluating users satis-

faction by a given topics partition, and showed that the decision problems

related to these two models are NP-complete. We approximated solutions for

the decision problems in both models by generating partitions by using hi-

erarchical agglomerative clustering algorithms, and proposed heuristical ap-

proaches for finding the best partition among all generated HAC partitions

in both models. We evaluated the quality of our partitions on the subset of

Netflix movie database ratings. We extended the proposed algorithms for CP

to create a top− k recommendation algorithm, and evaluate its performance

against the Nearest Bicluster Algorithm, described in [31].

By analyzing results that we have obtained through testing our proposed

approaches on the Netflix movie database ratings we came to some conclu-

sions:

If β value in the A-model approximation algorithm is increased, a fraction α

of β-satisfied users for the best partition will decrease. The same property

holds when increasing α value in the B-model approximation algorithm. The

increase of α-value will decrease the level of β-satisfaction for a computed

α-fraction of users. This observation is in line with some properties of real

data sets. In a real dataset we can rarely find a very large fraction of users

who like and dislike items in a very same or a highly similar way. That does

not mean that clusters of users with highly similar taste for items do not

exist, but it is not realistic to expect for these clusters of users to be very
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large.

We also came to a conclusion that approximation algorithms for the A and B

models are able to detect existing preference towards certain sets of items, if

that preference exists in a given dataset. That conclusion is made by compar-

ing α and β coefficients computed by applying our approximation algorithms

on a real dataset to those computed by applying the same algorithms on

randomly generated data.

By analyzing Jaccard error distance of produced partitions a human-based

genre partition we came to a conclusion that, in the B-model approximation

algorithm, a higher α input will produce partitions that are less meaningful

and similar to those produced on random data. However, for smaller α frac-

tions of users (α ≤ 0.4) levels of β-satisfaction for users will be much higher,

and those partitions will be much closer to a human generated genre-based

partition.

By analyzing and comparing F1 values for top − k recommendations pro-

duced by our proposed top−k recommendation algorithm to those produced

by Nearest Bicluster algorithm, we came to a conclusion that our recom-

mendations produce recommendations of a higher quality compared to those

generated by Nearest Bicluster algorithm. The reason for this can probably

be found in a fact that our approach takes into account all existing rating

(both positive and negative) when computing recommendations. Nearest

Bicluster algorithm takes into account only positive data when computing

recommendations.
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Chapter 5

CF Framework for Finding

Seminal Data

In this chapter we introduce a novel approach of collaborative filtering frame-

work for finding seminal and seminally affected work for sets of items.

Seminal work, in general, includes previous work in some area that in-

fluenced the future work in the given area. In the terms of users, items and

preference data, we use the concept of seminal work to mark items released

in the past that are highly correlated to some future sets of items in the

terms of users preferences. For example, for a given dataset of movie ratings,

seminal work for a given set of movies includes movies released in the past,

that are highly correlated either with the given set of query movies, or with

movies that are highly correlated to that set.
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Seminally affected work includes work in some area that is significantly

influenced by some previously released work in the given area. Seminally

affected work for a given set of items includes items released after the items

in a given set that are highly correlated either with the given set of query

items, or with items that are highly correlated to that set. For an example of

a dataset of movie ratings, seminally affected work includes movies released

after a given set of movies that are highly correlated with the given set of

query movies, or with movies that are highly correlated to that set.

Examples of searches for seminal work are numerous, especially in citation

analysis. For example, in [17] the authors are exploring citations available

from CiteSeer to build graphs of citations. Two types of edges are used

to represent relations between nodes (documents) in graphs : Reference and

IsReferencedBy. The authors then use these graphs to find a partitions whose

cut is minimal.

5.1 Mathematical Model for Finding Seminal

and Seminally Affected Work

For a given users-items preference data, we build two correlation directed

acyclic graphs (DAGs) Gchron = (V, Ec) and Grev = (V, Er). Nodes in V

correspond to items form a given user-items preference data. The difference

between Gchron and Grev is in the direction of edges in the corresponding

edges sets. In Ec, for two items (nodes) v1 and v2 from V , there exists a cor-
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responding directed edge −→e = (v1, v2) ∈ E if the correlation between v1 and

v2, corrv1,v2 is above some relatively high threshold value corrmin, and the

item represented by a node v1 is released before the item represented by v2.

In Er the edges are directed from items that are released later to items that

are released earlier. So we can see that directions of edges are determined by

a chronological order of the release times of items, from earliest to latest in

Gchron and from latest to earliest in Grev.

We used the Pearson-r correlation measure [25] to compute correlation

values between pairs of movie items. This measure is very common in item-

item collaborative filtering.

If Uc is a set of users who rated both items a and b, the Pearson correlation

between these two items is expressed as:

corra,b =

∑
i∈Uc

(vi,a − r̄a)(vi,b − r̄b)√∑
i∈Uc

(vi,a − r̄a)2
∑

i∈Uc
(vi,b − r̄b)2

(5.1)

where r̄a and r̄b are mean vote values for items a and b.

Note that these approaches will not necessarily create rooted DAGs. How-

ever, it is possible to create a rooted DAG by adding an extra artificial root

r.
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5.2 Types of Queries for Seminal and Semi-

nally Affected Items

There are three types of queries supported by the proposed approach on find-

ing seminal and seminally affected items. All of them utilize the concept of

finding seminal and seminally affected set of items to produce highly corre-

lated recommendations for a given set of query items. One type of supported

queries return for a given set Q of query items the seminal work items that

are common for at least two items from the set. If the query set has only one

item, it returns all seminal work items from the past that are highly related

to the given item.

The second type of queries supported by our proposed approach are queries

that return, for the given set Q of query items, all items released after the

given query items Q that are commonly influenced by two or more items from

Q. So in this case, we are looking for a set of future items which seminal

work contains at least two items from the query set. If the query set has

only one item, these types of queries return all items that are released after

the given query item, for which the given query item presents the part of

their seminal work. The third type of queries supported by our approach are

queries that represent union of results for two previously discussed types of

queries. So for a given set of query items Q this query returns all common

seminal work items from the query set, as well as all items released after the

items from the query set that were influenced by some subset of two or more
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items from Q.

To be able to find seminal and seminally affected work for a given set

of query items, we execute ancestor queries on DAGs described in 5.1. For

a given set of query items Q we compute, for each item i, all ancestors of

i in corrsponding correlation DAGs Gchron, Grev, depending on what kind

of queries we are executing. Once when all ancestors for all query items

are computed, we find all common ancestors for items from the query set.

Depending on a type of query, we search for common ancestors of query

items in Gchron (for seminal work queries), Grev (for seminally affected work

queries) or in both (for union queries). The Algorithm 5.1 describes the

procedure of looking for either seminal or seminally affected work.

Algorithm 5.1 Algorithm for computing seminal or seminally affected work
for a set of items
1: INPUT: Set of Query Movies Q = I1, ..., Ik represented by their all-paths

labels
2: OUTPUT: Set S=Is1 , Is2 , ...Isl

that represents the seminal work for the
input set

3: Let SemWorkSet=[]
4: Let AllAncestors= []
5: for all query items q in Q do
6: Alq=all ancestor labels for q
7: NewSemWork=AllAncestors∩Alq

8: AllAncestors=AllAncestors∪Alq

9: SemWorkSet=SemWorkSet∪NewSemWork
10: end for
11: Return SemWorkSet

To be able to execute ancestor queries in efficient ways, we propose com-
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pact labelling schemes for DAGs to encode all nodes (items) in the each DAG

such that each node’s label contains all-paths information for the given node

in the DAG. Besides keeping all path information for each node from a DAG,

these schemes are space efficient and take relatively small space to store all-

path information for each node. In that way, if a given seminal works query

contains k items, we find all ancestors for each query item directly from a

given all-path information label and compare it with the ancestors of other

items.

5.3 Related Work

Several researchers have adopted correlation graph representations of the

problem domain [9, 20]. In the collaborative filtering domain, [2] presents

horting, a graph based technique where nodes represent users and directed

edges between nodes correspond to the notion of predictability.

An NCA u of nodes v and w in a dag D is an ancestor of both v and

w, where u does not have descendants that are ancestors for both v and w.

Labelling schemes for NCA queries have been shown to belong to a larger,

more general family, of graph labelling schemes that are called the informa-

tive labelling schemes (see [24]). This family includes all label-based graph

representations that will allow retrieving certain specific global properties

using only local information. Properties that have been studied include,

subsumption check, descendants, ancestors or NCAs, and graph distances

70



[24].

[1] presents two tree labelling schemes for answering ancestor queries,

with labels of size 5
3 log n + O(1) and 3

2 log n + O(log log n) bits respectively.

These labelling schemes are used to label XML trees and provide efficient

execution of the ancestor queries in XML web searching engines.

In Section 5.5, we describe the first phase of our encoding scheme by

providing a simple and efficient algorithm for variable-length labelling of trees

that ignores issues of delimiting edges. This provides a theoretical benchmark

for our final labelling. In Section 5.6, we consider three potential delimiting

schemes, and analyze bounds on the space required when applying each of

these schemes. In Section 5.7, we show how these delimiting schemes can

be used to extend the basic scheme on trees and thus compactly encode

subgraphs of dags. In Section 5.8 we present some of the applications of

the proposed labelling schemes on our movie recommendation system called

MovieTrack.

5.4 Compact Labeling Schemes for Rooted

DAGs - Problem Statement and Design

Approaches

Formal Problem Statement: Given a dag D = (V, E) (representing a hierar-

chical taxonomy) the problem of all local path encoding is defined as follows:
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1) produce a labelling of the nodes of V , where each node v in V is represented

by L(v), a unique identifier in binary, 2) for each node v in V , produce an

encoded binary string E(v) so that all paths can be reconstructed from E(v)

only, where reconstruction means that for each path r = v1, v2, . . . , vk = v

from root r to node v we can present the associated sequences of node labels

L(v1), L(v2), . . . , L(vk) for each node on that path.

Our Design Methodology for All Local Path Encoding is divided into three

stages. In the first stage we choose a spanning tree of the dag and produce

a binary labelling of the edges of the spanning tree in such a way that the

out edges associated with a node v are unique, and in addition we use the

fewest bits possible to do this. Next, for each node v we concatenate the

labels of the edges on the unique root to node v path; let L′(v) denote this

string. This labelling is not necessarily unique and thus can not be used as

valid encoding. However, this is a quite compact labelling, requiring for each

node v only ,logn-+ σv bits, where n is the number of nodes in the dag and

σv is the depth of v in the spanning tree (see Theorem 5.1). In the next

stage, we produce a valid encoding of the nodes by solving the problem of

delimiting each of the edges in L′(v). There are several methods that can

accomplish this, and we show that by considering the structure of the dag

improved solutions are possible. The final stage of our methodology involves

creating the final encoding E(v) by creating a list of edges that do not lie

on the spanning tree, yet are on some path from root r to v. Again various

schemes are possible for encoding such an edge list, and we present several
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alternatives.

We present several methods for the effective delimitation of edges. These

various methods offer alternatives for fine tuning an encoding of all-paths in-

formation based upon specific parameter values of particular directed acyclic

graphs.

We present a variable length encoding scheme (applicable for any tree) so

that root to node v paths can be represented with σv + ,log(n)- bits, where

σv is the depth of node v in the tree. This result is before delimitation, which

in general results in a constant factor overhead increase on the result above.

We present a variety of delimitation schemes that can be tailored to specific

dags and thus can minimize the constant factors involved.

We begin our encoding of a hierarchical taxonomy with a method using

a prefix based approach in which all nodes are labelled with a string in

such a way that for each node v there is a path to the root so that each

node on this path is labelled with a prefix of the label used for v. We call

this approach a greedy Dewey labelling due to its natural relation to Dewey

decimal hierarchical classification commonly used for libraries.

The scheme is broken into two parts: the first is called the greedy Dewey

labelling for trees (or, TGDL for short), and the second is called the extended

greedy Dewey labelling for dags (or, EGDL for short).
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5.5 Greedy Labelling for Trees (TGDL)

Our proposed DAG labelling [28] includes two schemes: the first is called

the Greedy Dewey Labelling for Trees (or TGDL) and the second is called

the Extended Greedy Dewey Labelling for DAGs (or EGDL).

The TGDL labelling scheme is a prefix-based labelling scheme. The first

phase of the TGDL labeling algorithm includes finding and extracting a

Breadth-First (BF) tree T from a rooted hierarchy H that represents some

rooted taxonomy. After the BF tree is found, TGDL is performed as follows.

The root r of the taxonomy (and the BFS tree T) is labelled with the label

TGDL(r)=ε, where ε denotes an empty bit string. For each non-root node v

in the tree T, TGDL(v)=TGDL(u)· edel(ev)·GDL(ev), where u is the parent

of v in T, ev is the edge from u to v, and edel(ev) is the edge delimiting label,

which can be considered as encoding the length of GDL(ev) (see Figure 5.1).

The GDL labels of the tree edges are obtained as follows. All children

edges ec1 , , ecj of the parent node u are ordered in the non-decreasing order

based on the size of the subtree rooted at the associated child. For each child

edge eci of the node v, the GDL label is assigned uniquely, where the ith edge

in the previously mentioned ordering is encoded with exactly ,log2(i + 1)-

bits. (see Figure 5.3).
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Figure 5.1: TGDL labelling of nodes of tree given by solid edges.

Analysis of the Length for the TGDL Labels The length of the TGDL

labels depends, among other things, on the length and implementation of the

edge delimiting labels. We performed analysis of the TGDL labels length in

two steps. In the first step, we assumed that the edge delimiting labels are

empty. This step is purely theoretical and we used it primarily to estimate the

lower bound of our labelling approach. In the second step, we analyzed the

length of the TGDL labels given different labelling schemes for the delimiting

labels.

TGDL Labels Without Delimiters

75



Figure 5.2: Path from a node to the root in a tree

Theorem 5.1. Let T be a tree with n nodes. The TGDL algorithm labels

each node v of the tree with at most σv + ,log n- bits, where σv is the depth

of v in T . This length excludes edge delimiters.

Proof. Let nv denote the size of the subtree of T rooted at node v. Consider

any edge (u, v) in the tree T . We can bound number of bits used to encode

this edge by the expression:

,log(
nu

nv
+ 1)- ≤ ,log

nu

nv
+ 1-
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Figure 5.3: GDL labelling for tree edges

This is due to the fact that the GDL labelling uses exactly ,log(i + 1)- bits

to encode the edge incident to the ith largest subtree, and, for any i, the size

of the ith largest subtree is less than the size of tree divided by i.

Now consider any length-k tree path v0, v1, , vk from the root v0 to the

leaf node vk. Obviously, this path is of length σvk
. As we assumed that the

edge delimiting labels are empty, the total number of bits used to encode all

edges on this path is bounded above by the sum:

,log
nv0

nv1

-+ 1 + ,log
nv1

nv2

-+ 1 + ... + ,log
nvk−1

nvk

-+ 1 ≤

σvk
+ ,log

nv0

nv1

+ log
nv1

nv2

+ ... + log
nvk−1

nvk

- =

σvk
+ ,log

nv0

nvk

- =

σvk
+ ,log n-
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Algorithm 5.2 The TGDL algorithm
Input:Hierarchy H given as a dag D;
Output:TGDL labelling for T;

begin
Identify the breadth-first tree T in D;
Label root of T with an empty label, TGDL(r)=ε;
for all nodes v in T in breadth-first order do

Perform GDL labelling for children edges of v in T;
for all ui that are children of v in T do

Find edge delimiter edel(ei) for ei = (v, ui);
TGDL(ui)= TGDL(v)·edel(ei)·GDL(ei);

end for
end for
end.

5.6 Delimiting Schemes

We analyzed three different labelling schemes for edge delimiters, based on

different methods for length encoding: Unary, fixed binary and variable bi-

nary scheme.

5.6.1 Unary Length Encoding

In the unary labelling scheme, for a given edge e, the edge delimiting label

for e is a bit string of length |e|, edel(e) = (0)|e|−11, where (0)|e|−1 denotes a

|e|− 1 long zero bit string.

Corollary 5.1. Let T be a tree with n nodes. If the unary length encoding

scheme is used for encoding the edge delimiters, then the TGDL algorithm

labels each node v of the tree with at most 2(σv + ,log(n)-) bits, where σv is
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the depth of v in T .

5.6.2 Fixed Binary Length Encoding

In the fixed binary labelling scheme, an edge delimiter for some edge e is

the binary representation of the length for GDL(e). All edge delimiters are

encoded with the fixed number of bits, that is approximately .log log(∆∗+1)/,

where ∆∗ is the maximum node out-degree that is found in a given tree.

Corollary 5.2. Let T be a tree with n nodes. If the fixed binary length encod-

ing scheme is used for encoding the edge delimiters, then the TGDL algorithm

labels each node v of the tree with at most σv +,log n-+σv.log,log(∆∗+1)-/

bits, where ∆∗ is the maximum node out-degree in T , and σv is the depth of

v in T .

5.6.3 Variable Binary Length Encoding

In this labelling scheme, for a given node vp and a given path rv1...vp from the

root to vp in a tree T , each edge delimiter in this path is encoded with approx-

imately .log log(∆∗
pathvp

+ 1)/ bits. ∆∗
pathvp

is the maximum node out-degree

for the nodes on the given path. Additional bit string of length approxi-

mately of .log log log(∆∗ +1)/ bits is preceding the edge encodings. This bit

string is used to determine the maximum length of edge encodings at the

given path.

Corollary 5.3. Let T be a tree with n nodes. If the variable binary length
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encoding scheme is used for encoding the edge delimiters, then the TGDL

algorithm labels each node v of the tree with at most

σv + ,log n-+σv.log,log(∆∗
pathv + 1)-/+ .log.log,(∆∗ + 1)-// bits, where ∆∗

is the maximum node out-degree in T , σv is the depth of v in T , and ∆∗
pathv

is the maximum out-degree for nodes on the path from the root to v in T.

5.7 Extended Greedy for DAGs(EGDL)

Our goal for extending the ’greedy Dewey’ labelling from the last section is

to design a compact encoding for each node of the MovieTrack correlation

DAG, so that all relevant path information can be effectively computed using

only the information in the encoding of the node. Since we are, for this paper,

considering the path structure of a dag D, we are interested in encoding for

each node v of D the path-induced subgraph of v in D; call this PS(v). This

subgraph is defined as the unique minimal subdigraph of D that contains

all the paths in the dag from the root to node v. Since our TGDL labelling

implicitly encodes nodes as breadth-first paths from the root, we see that

to encode PS(v) we require only information about the edges that do not

appear in the breadth-first tree. To generate the EGDL label for the node

v, we simply concatenate together an edge list for all non-tree edges of the

subgraph PS(v).

Any edge of D can be represented by a pair of vertices. Therefore, in

the EGDL labelling for D, each node v is represented as EGDL(v) =
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ndel(v)·TGDL(v)· edgeEGDL(e1)· ...· edgeEGDL(eg), where edgeEGDL(e) is the

EGDL encoding for the non-tree edges in PS(v), edgeEGDL(e) =ndel(v1)·TGDL(v1)·ndel(v2)·

TGDL(v2), for e = (v1, v2). ndel(v) is a node delimiting label for v, and it

can be implemented using the previously mentioned unary and fixed binary

labelling schemes. In the fixed binary labelling scheme, the node delim-

iter for v is encoded with at most .log(σ∗)/ bits, where σ∗ is the depth of

the BF tree of D.The unary labelling scheme labels each node delimiter for

v with at most σv + 1 bits, where σv is the depth of v in the BF tree. Note

that node delimiters are non-empty for each node, including the root.

Theorem 5.2. Let m′ be the number of non-tree edges in the subgraph PS(v)

of the Dag D, and let σ∗ be the depth of a BF tree of D. The Extended

Greedy Dewey Labelling (EGDL) for a dag D labels each node with at most

O(m′(σ∗ + log(n)) bits.

5.8 MovieTrack

The previously proposed approach for finding seminal and seminally affected

work in items we applied to implement our movie recommendation system

called MovieTrack [22].

The MovieTrack system is our web-based system based on movies from the

Netflix movie ratings database that assists a user to find seminal work and

seminally affected work for movies that he already liked. The intuition be-

hind this approach is, if a user has a very high preference towards certain
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sets of movies, that he will most likely be interested in some previous movies

that are highly correlated with different subsets of the given movies.

It is 3-tiered system, meaning that it has a client application as the front tier

(ASP.NET .aspx web page), set of XML .NET web services as the middle

tier, and a MySQL database as the end tier (see 5.4).

The ASP.NET web page at the front end is used by a user to enter movies

to perform one of three types of seminal work queries. Once when the items

are entered, the client application calls one of the methods published by the

given web service. The web service then queries the database, reads all paths

information for each item in the seminal work query, evaluates all ancestor

queries between each pair of items in the query set, queries the database to

get titles for all computed ancestors and return results back to the user.

We store information from correlation DAGs in MySQL database. From

all movies that are provided in the Netflix movie ratings database, we chose

a subset of around 1000 highly correlated movies to build two correlation

DAGs Gchron = (V, Eh) and Grev = (V, Er). The major drawback of the Net-

flix move ratings database is the sparsity of data. Unfortunately, we could

not include those movie items that have really small number of ratings, as

they are very poorly correlated to other items in the set.

For each node (movie) from the DAG we store the label produced by the

Extended Greedy Dewey Labelling for DAGs (described in 5.7) using the
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Variable Length Encoding Scheme. These labels enable us to perform an-

cestor queries on any subset of query items without querying the database

multiple times.

5.9 Query Results and Conclusions

We performed some union queries using the MovieTrack system and here

we present the results. Note that the DAGs we are querying are only 1000

nodes each, so they cannot include all possible seminal and seminally affected

movies for a given set Q. When querying the system we use asp.net web page,

that lists all 1000 movies from the DAG, with an options for each move to

be checked by using checkboxes. For a snapshot of the MovieTrack front-end

see 5.5. We pick sets of query items from different topics, as given by some

lists from the Amazon Listmania [16]. Our sets of movies are chosen either

by the topic (genre) or by a main actor in them.

As we can see from the Table 5.1, seminal and seminally affected works for

a given set query are usually very similar, in some human, non-mathematical

way of similarity, to the movies from the query set. There are three main

topics to which query items belong to. The first group of query movies

are movies that are considered to be classical American comedies with lots

of American humor. As we can see from the Table 5.1, the seminal and

seminally affected movies are also American comedies. The second group of

query movies belong to the topic of “Sandra Bullock” movies. As we can see
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from the Table 5.1, query results returned for this set of query items are also

movies with Sandra Bullock in them. The third group of movies belong to

the Listmania category of “dramedies”. All of these movies cover some very

serious or dark subjects in a somehow comical way.We can see that the query

with some dramedies produced more dramedies as well.
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Figure 5.4: MovieTrack : 3-tier Architecture
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Figure 5.5: MovieTrack : Front end GUI
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Chapter 6

Conclusions and Future Work

Conclusions and Contributions This thesis proposes novel frameworks

and algorithms in the area of collaborative filtering. As we were able to

experience while doing our research for this thesis, performing collaborative

filtering tasks on large data sets is a very challenging task. Major two issues

related to collaborative filtering algorithms are how to improve accuracy of

and scalability. However, improving the performance of one of these two

features usually negatively affects the other feature, so a real challenge in

designing algorithms for collaborative filtering is how to design algorithms

that exhibit a high performance for both of these features.

In the first part of this thesis we proposed a collaborative partitioning

framework (CP) for partitioning items into segments that are able to satisfy

a high percentage of users. We introduced the bicriteria, (α, β)- optimization
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problem, where β is a coefficient expressing the level of a user satisfaction,

and α is a coefficient that tells us what percentage of users are β-satisfied.

We proposed two models for measuring quality of partitions in CP : the A-

model and the B- model.

The bicriteria optimization problem introduced in this thesis is similar to the

correlation clustering problem introduced in [4]. Both of the problems are

NP-hard (we proved NP-hardness of our bicriteria optimization problem in

section 3.4). However, finding a good approximation for our bicriteria opti-

mization problem is more complicated, since edges in graphs are not labelled

with simple +,− labels, but with real numbers in the range [−1, 1].

To measure quality of computed partitions we introduced two mathematical

models - the A and B models.

The A-model measures the quality of partitions in CP by measuring

number of threshold satisfied users. For a given partition P = I1, ...Ik, a

threshold satisfied user is a user that has the inner product with one (or

more) of the segment vectors Ii in P greater than or equal to the threshold

fraction of the square of its norm. So, in this case threshold satisfaction

measures the level of agreement a given user with segments in P. The B-

model measures the quality of partitions in CP by looking on the CP tasks

as a graph clustering tasks. In this model CP is trying to maximize the sum

of inter-cluster weights plus (negative) sum of intra-cluster weights. This

model measures the quality of partitions by measuring how much benefit is
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achieved by removing some users from a cluster in maximizing the previously

mentioned sum.

As we proved in the Chapter 3, both optimization problems for the A-model

and the B-model are NP-hard, so finding a scalable algorithmic solution for

these problems is not an option. We present a heuristic polynomial time

algorithms for approximating solutions in both models, where initial families

of partitions are produced by using six different Hierarchical Agglomerative

Clustering methods (HAC). As we showed in the experimental results, there

are two types of conclusions that we have made analyzing experimentally

produced partitions: 1.The partitions produced by the proposed heuristical

algorithms are very close to a human-based genre partitioning, especially for

highly satisfied users, and 2.The proposed heuristic approaches finds signifi-

cant items partitioning in genre-biased Netflix data which are not found by

applying the same heuristic approaches on randomly generated, genre non-

biased data, and 3.CP algorithm for the B-model is a good starting point in

creating a top-k recommendations for sets of users.

The novelty of our work is in the fact that we introduced new polynomial

approximation algorithms for approximating CP problem, and we also define

mathematical models to evaluate quality of achieved partitions. Additionally,

we show that our CP approximation algorithm for the B-model can be used

to design a top − k recommendation algorithm that produces recommenda-

tion of higher quality, compared to other top−k recommendation algorithms

that work with similar data.
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In the second part of this thesis we introduced a novel way of finding the

seminal and seminally related work for a given sets of items, for a given users-

items preference dataset. We introduced a method that translates item-item

correlations into a correlation directed graphs (DAGs), where directions on

edges are determined by a chronological order of release dates for movies

(items). We proposed compact DAG labeling schemes that encode all path

information for each node in a DAG, and show how these algorithms could

be used for fast querying of the correlation DAG for seminal and seminally

affected work for a given set of movies. As the experiments with the Movi-

eTrack system show, search for seminal and seminally affected work for a

given set of movies, tends to find highly related and relevant movies. The

novelty of this project is that we proposed a graph model for representing

preference datasets as directed graphs, and we also propose some novel ap-

proaches for efficient execution of ancestor queries on these DAGs, by design-

ing compact labelling schemes for DAGs that encode all-path information for

each node in relatively small node labels.

The contribution of this thesis to the areas of collaborative filtering is

in finding novel collaborative filtering approaches that can be very useful in

finding future item recommendations for users in a given users-items pref-

erence datasets. Algorithms that we propose in this thesis are scalable and

suitable to be applied on very large datasets.
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Future Work There are couple of research questions that should be con-

sidered in the future.

Regarding the collaborative partitioning, experiments should be performed

to test connection between quality of partitions in the A-model with the

quality of produced top-k recommendation lists. Future work also includes

testing our proposed top− k recommendation algorithm against some other

top− k recommendation algorithms, besides Nearest Cluster top− k recom-

mendation algorithm.

More experiments are needed in the future to experimentally evaluate

how the proposed approximation algorithms perform when applied to real

data sets of different nature. Also, more synthetic data should be gener-

ated, with one part of data generated in random, and one part containing

non-random, genre-biased ratings, to see how the proposed approximation

algorithms are going to perform in that case.

We noticed that a data sparsity can greatly affect the accuracy of par-

titioning in both A and B models. Our experimental results show that the

items that are missing numerous reviews are usually misplaced in incorrect

segments in CP, or are placed in a singleton segment. More research should

be done in investigating if there is any way in removing this negative ef-

fect or automatically determining when a given item simply does not have

enough data to be partitioned anywhere. Our CP proposed approaches are
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working with “thumbs-up”, “thumbs-down” and “no review” types of ratings

only. The research question that should be investigated in the future is how

to extend the proposed CP algorithms on working with a 5-scale ratings data.

In the research related to finding seminal and seminally affected work

in movies, the future work involves incorporating a larger correlation DAG

to work on (the current one contains around 1000 nodes), and testing how

different correlation measures, besides the Pearson − r correlation can af-

fect the quality of results retrieve. More testing with human subjects is

necessary to determine the human-evaluated accuracy of answers for sem-

inal and seminally affected queries. So future work would include adding

more functionality to MovieTrack system, that would give options to users

to express their satisfaction and dissatisfaction with related movies found

by MovieTrack. Also, it would be very interesting to research into possible

connections between genre partitioning, that was covered in CP, and seminal

work, because some of the queries show that they might be very connected

(i.e. seminal work and seminally affected work queries on a same genre movie

sets tends to return results in the same genre).
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