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Abstract

In this thesis we develop a framework for studying and understanding the tradeoffs involved

in efficient multicast route determination. Using this framework, we developed an algorithm

(Myriad) that exhibits superior theoretical and empirical results over previously published

work. We have validated this work through extensive simulation using a variety of met-

ric spaces, and by proving a series of mathematical theorems concerning degree-bounded

spanning trees over metric spaces.

This study is done through examination of the degree-constrained minimum average-

latency spanning tree problem (or DC-MAL). Creating a solution which places each par-

ticipant at their optimal locality along a path from the root is an NP-hard problem, thus

motivating a search for approximate solutions. This type of organization for information re-

laying is a natural model of the multicast problem and lends itself to theoretical analysis that

can be applied in application level peer-to-peer overlay networks. Out-degree constraints fol-

low directly from the need for high bandwidth multimedia streams and the ability to relay

the information without any loss. Study of this problem is important since it is expected that

the demand for multicast applications will continue to grow, and such applications require

scalability to millions of simultaneous subscribers.
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Chapter 1

Introduction

The problem of multicasting on the Internet is that of finding communication paths from

one source to multiple recipients [7, 9]. Internet Protocol (IP) multicasting, as it is known

today, is based on the work of Stephen Deering [30]. Prior to the proposal for bridging

isolated datagram networks [28, 29, 30], multicast was restricted to local area networks.

Multicasting on the Internet is difficult due to the number of potential participants (up to

thousands or even millions), managing subscription groups (introducing state into a stateless

system [24]), and bandwidth requirements for multimedia content being sent from a single

source to a large, distributed subscriber base.

Study of this problem is important since it is expected that the demand for multicast

applications will continue to grow, and such applications require scalability to millions of

simultaneous subscribers. Use of unicast transmission to service large subscriber groups only

wastes bandwidth and becomes impractical as the amount bandwidth required for individual

streams grows [69].

In this thesis, we attack the multicast problem by providing a framework for experimen-

tation, evaluation, and algorithm development. We bring forward the primary factors for

multicast tree evaluation (through examining existing metrics and introducing new metrics,

1



see Section 1.2) and concentrate on minimizing the average-latency from the source of a com-

munication to all recipients, where latency represents the minimum communication traversal

time along the path from the source to a destination. The following is our thesis statement.

In this thesis we develop a framework for studying and understanding the

tradeoffs involved in efficient multicast route determination. Using this frame-

work, we developed an algorithm (Myriad) that exhibits superior theoretical and

empirical results over previously published work. We have validated this work

through extensive simulation using a variety of metric spaces, and by proving a

series of mathematical theorems concerning spanning trees over metric spaces.

Our process of experimentation and algorithm development has uncovered tradeoffs be-

tween tree weight and latency and maximum depth and latency [41], with the depth-latency

tradeoff being the primary one addressed here. All of this is done within the context of

models of the the Internet with the goals of satisfying bandwidth requirements and reducing

redundant transmissions using volunteer computing via end-systems on the fringes of the

Internet [24].

Due to lack of wide spread adoption of IP multicasting, technical limitations, and connec-

tivity restrictions, application level control of multicasting functionality is a focus of current

research [23, 25, 32, 34, 45, 69]. In this thesis, we examine the problem of application level

multicasting as an alternative to network level multicasting. Among Internet standards,

the Distance Vector Multicast Routing Protocol (DVMRP) [6] continues to be the primary

method of determining multicast routes and is based on reverse path forwarding [43]. We

propose alternative solutions that take into consideration more information for informed cal-

culation as an alternative to both network level and application level reverse path forwarding

solutions (such as [20]).

The ability to calculate efficient multicast routes is important because of the practical ap-
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plications that can be built with trees that exhibit low average-latency. Continued research

on this problem as an enabling technology for application level (or end system) multicasting

on the Internet is important because of the current and potential uses for multicast distribu-

tion and peer-to-peer technology to power applications and deliver information. Multicast

has the ability to reduce server load and delivery time [57, 60]. Several applications have

been built that have been enabled by multicasting, including a stock trading system [1],

online collaboration [49], general content distribution [40], and, perhaps most often cited,

delivery of streaming multimedia content [24, 26, 58, 61, 64]. We believe that the delivery of

rich multimedia content will continue to gain importance in the future as computing becomes

ubiquitous [48].

Examination of this problem is warranted because of the potential impact of efficient

route construction for information dissemination on the Internet. As bandwidth intensive

content (live and pre-recorded broadcast video content) and frequently updated items (dis-

crete news content) become more widely utilized on the Internet, it becomes desirable for

server providers to reduce their processing and bandwidth requirements through multicast.

In order to enable near real-time data delivery by the creation of multicast routes that

minimize the average-latency and reduce network stress through enforcements of degree con-

straints, algorithms are needed to produce the required multicast trees.

In this thesis, we present a framework for studying, understanding, and designing algo-

rithmic solutions for the multicasting problem. Our framework focuses on minimizing the

average-latency of end systems under a model of network bandwidth constraints realized

by constraining the out-degree of multicast tree solutions. In this framework, we consider

the distortion of degree-bounded solution trees measured over an underlying metric space.

In Chapter 4 we prove some lower bounds (Theorem 2.2) on the distortion over metric

spaces associated with hypercube topologies. In Chapter 2 we prove upper bounds on the

distortion of trees constructed by our heuristic algorithm Myriad on general metric spaces
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(Theorem 2.1). In Chapter 4 we present an extensive experimental study which compares

the (distortion) performance of Myriad to the best known solutions over a variety of metric

spaces.

In this thesis we present a new algorithm, named Myriad, which calculates efficient

multicast distribution paths in a graph. The goal of any such algorithm is to provide paths

that deliver the desired information with minimum average-latency for all participants while

remaining within the physical constraints of the system. For computer networks, degree

constraints are the logical representation of bandwidth limitations at end systems on a

network.

Many fundamental network optimization problems, such as minimum cost shortest path,

become NP-hard with degree constraints [35, 53]. Solutions to these types of problems are

well studied and continue to be studied and combined as variations of bicriteria problems

related to minimum cost degree-bounded network design [16, 39, 41, 42, 47, 52, 53].

In this thesis, we examine the area of network design problems in the context of min-

imizing the average delivery time for all participants. Specifically, we examine the degree-

constrained minimum average-latency spanning tree problem (hereafter referred to as DC-

MAL) as it relates to a modeling of application level multicasting in peer-to-peer systems

on the Internet. DC-MAL is fully described in Section 1.1.

During the process of this investigation we have created a new heuristic algorithm, Myr-

iad, to create trees that provide approximate solutions to DC-MAL. Using high performance

computing and custom simulation software, we have compared Myriad to some of the best

performing algorithms in this area. We have studied comparisons over several classes of un-

derlying metrics. Our focus is on the average-latency and resultant tree height for calculated

multicast distribution trees. Our empirical study focused on comparisons with three previ-

ous works, the KLS [42] algorithm for minimum diameter degree-bounded spanning trees,

the greedy MDDBST [60] algorithm designed for multicasting, and the Overlay Multicast

4



Network Infrastructure (OMNI) [16]. A full description of the experimental methodology

employed can be found in Chapter 4. The results of our experiments indicated that there is

a tradeoff between achieving a lower average-latency value and producing a tree of minimum

height. We refer to a tree of minimum possible height, considering an out-degree constraint,

to be a compact tree and demonstrate the effect on average-latency when forcing a tree to

be compact. Myriad is shown to outperform existing work both through the examination

of theoretical bounds and extensive experimentation.

Figure 1.1: Sample multicast tree calculated by Myriad, non compact.

To highlight the effects on average-latency by forcing a compact tree, we refer to Figure

1.1 and Figure 1.2. Both of these trees have been calculated over the same input metric

(Euclidean 2-d space) using the Myriad algorithm, with Figure 1.2 showing a forcibly compact

tree. In this example the ratio of average-latency in the compact tree to the non-compact tree

is 272.3846
254.3846

= 1.071. The difference in depth is 1, with the compact tree using the minimum

required 3 levels, and the non-compact version using 4 levels.
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Figure 1.2: Sample multicast tree calculated by Myriad, compact.

This work also contributes a set of performance metrics for describing and comparing

multicast trees. These metrics measure things such as average depth (hops), maximum

depth, average load (out degree for non-leaf nodes), total delivery time, average delivery time

for all nodes, and longest path delivery time. This advances a methodology for examining

and categorizing depth-latency tradeoffs in multicast systems and provides a framework for

study and experimentation on this and related issues. The framework we have developed

consists of a software implementation of an extensible graph structure and simulator for

examining network design problems (Chapter 4). Our definitions of important multicast

tree metrics (Section 1.1) and discussion of experimental results (Section 4.5) provide a

conceptual framework for discussion of the multicast problem and comparison of solutions

to this problem.
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1.1 Multicast Problem Definition

On the Internet, two end systems are connected by multiple physical links spanned by

middleboxes such as routers, switches, firewalls, and network address translators [13]. For

purposes of computation, the path between two end systems is abstracted to a single virtual

link and assigned a representative weight based on the latency (minimum one way trip time)

between the two hosts. This abstraction follows from IP network routing functions.

In order to calculate an effective multicast tree over a particular set of nodes, we need to

be able to measure or derive the latency between all pairs of nodes, allowing a complete graph

to be constructed. We study the problem in a graph theoretic model, where the input is a

weighted complete graph, G = (V, E). V is the set of all vertices (end systems in the network)

and E is the set of weighted, undirected edges between all nodes. We focus on networks in

which all nodes are subscribers of the multicast group or one in which non-subscribers can

be ignored. The edges in the graph are undirected, indicating that there is the potential

for information to flow in either direction. Edges are assigned weights corresponding to the

latency between the nodes they connect.

In this thesis and in [41], we define a bicriteria problem with these constraints; (1)

minimize the maximum depth in the tree and (2) minimize the average-latency in the class

of out-degree B spanning trees. As a performance metric we will compute the product of

average-latency and maximum depth and show results for constraining the maximum depth

to the minimum possible depth, and allowing the height of the tree to change based on the

graph. By examining the normalized product of these two metrics we are able to compare

the blended result for all of the tested algorithms. Bounding the maximum depth of the tree,

and therefore bounding the maximum hops, is a meaningful metric for networks in which

time to live (TTL) is a parameter on messages, i.e. Gnutella [2]. Reducing the number of

hops between the root and leaves also lowers the number of potential failure points along any
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given root to leaf path. We will refer to this problem as the degree-constrained, minimum

average-latency spanning tree problem (or DC-MAL for short).

The definition of the DC-MAL problem follows from two similar problems.

1. DC-MD: The degree-constrained minimum diameter problem is defined by minimizing

the diameter of the tree in the class of out-degree B spanning trees.

2. DC-MML: The degree-constrained minimum maximum-latency problem is defined

by minimizing the maximum-latency in the class of out-degree B spanning trees.

These three problems are all related and can be combined to create more restrictive problem

specifications.

While minimizing diameter is a good general goal for group communication, there are

additional criteria that are important for enabling (near) real-time delivery for internet

multicast applications. In [16], this problem is defined as a bicriteria problem, which can

be stated as a minimization of two criteria: (1) the average-latency and (2) the maximum-

latency, under degree constraints. This is a combination of DC-MAL and DC-MML.

Within a given tree T , the length dT (v) of the path from the root to any node v in the tree

yields the latency required for a message to reach v. This tree distance dT (v) is simply the

sum of the metric distances on the unique path to v. Hence, we refer to the average-latency

based on these tree distances, and this average-latency is calculated as 1
n

∑
v∈T dT (v). For

the hop measurement of depthT (v), we use each node’s level in the tree, with the root having

a depth = 1.

We use these measures in our algorithms for degree-bounded spanning tree construction,

in particular approximating the minimum average-latency in a multicast distribution tree

while forming a compact tree (in terms of depth).

Calculation of a multicast tree in the context of the DC-MAL is NP-hard following from

a reduction from the traveling repairman problem [12], which we show below. DC-MD is
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shown to be NP-complete in the decision form by Shi et al. [60] via a reduction from the

traveling salesman problem. According to published literature, the minimum latency problem

is NP-Complete [12, 36, 56]. By Theorem 1.1, DC-MAL is NP-Complete.

Calculation of a tree using DC-MAL over the R1 can be done in polynomial time, thus the

problem is not NP-Complete for this metric space. For out degree one, the O(n2) algorithm

for solving the LINE-TRP problem can be used [12]. If the out-degree is larger, B ≥ 2,

then calculation of an optimal distribution tree can still be done in polynomial time by only

making one out connection from each vertex, with two out connections from the root (one

in each direction). Figure 1.3 shows an example tree in R
1 where B = 3, edges are drawn

off the metric line for illustration purposes only. It is an open problem whether or not an

optimal solution to DC-MAL can be found in polynomial time in R
1 where B ≥ 2 and the

tree is compact.

Figure 1.3: DC-MAL solution in R
1, with out-degree B = 3.

Let the formal definition of the decision version of DC-MAL be: given a graph, G = (V, E)

where n = |V |, an out-degree bound B > 0, an average-latency measurement = l, and a

root r: can a spanning tree rooted at r be built that obeys the out-degree bound and has an

average-latency of l? We also use the definition of the traveling repairman problem (TRP)

as defined in [12]. Let the definition of the decision version of TRP be: given a graph,

G = (V, E) where n = |V |, a starting location s: does a tour exist such that the total cost

of the tour is t where t =
∑

v∈V dT (r, v)? The general version of TRP is NP-Complete, as is

the Euclidean version of TRP [12].
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Theorem 1.1. The decision version of the degree-constrained minimum average latency

problem (DC-MAL) is NP-Complete. The problem remains NP-Complete over metric spaces,

in particular over R2.

Proof. DC-MAL is NP-Complete via reduction from the traveling repairman problem (TRP),

TRP ∝ DC-MAL.

An instance of TRP can be directly transformed to an instance of DC-MAL, by using the

same graph and specified root. The out-degree for DC-MAL is set to 1. The waiting time

metric for TRP, t, is transformed to an average latency requirement such that l = t/n. This

transformation is done in polynomial time.

It is immediate that there is a yes answer for DC-MAL iff the answer is yes for the instance

of TRP.

1.2 Performance Metrics for Multicast Trees

In order to assist in computation and analytic comparison of multicast trees, we analyze

algorithms using several classes of underlying metrics. There are also several standard no-

tations that we use throughout this work in relation to multicast trees, they are presented

here:

1. input graph: The completed weighted input graph G is defined as G = (V, E), where

V is the set of all vertices in the graph and E is the set of all edges in the graph.

2. number of vertices: The number of vertices in the graph n is simply the size of the

vertex set |V | = n.

3. out-degree bound: We define the out-degree bound parameter as B where B ≥ 2.
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4. multicast tree: The multicast tree calculated from an input graph G is defined as T .

It is the case that T is a subgraph of G, T ⊂ E(G).

5. root: The root of the multicast tree is a specific vertex r where r ∈ V (G)

6. metric distance: The distance between any two vertices u, v ∈ V is defined as

dm(u, v). The actual metric function used is dependent on the underlying metric space.

7. tree distance: The distance between any two vertices u, v ∈ V in the tree is defined

as dT (u, v). This distance calculation is the sum of the edge weights in the tree T from

an ancestor v to its descendent u. For shorthand, we represent the distance from the

root in the tree as dT (v), an equivalent to dT (v, r).

8. height: The height of a node in the tree h(v) is defined to be the depth of the node

in the tree +1.

The performance metrics used are defined as:

1. height/maximum depth: The height of a multicast tree is simply a count of the

number of levels in the tree. We begin counting with the root being of height 1. Given

the constraints of a degree bound B, the minimum height of any such degree bound

spanning tree is dlogBne. The level, or depth, of an individual vertex v ∈ V in the

final tree T is denoted as depthT (v).

2. average-depth: The average depth of all vertices in the tree is a useful measure as to

the perceived compactness of the tree and is calculated as 1
n

∑
v∈T depthT (v).

3. minimum possible depth: The minimum possible maximum depth for any tree

formed over the input graph based on |V | = n and B is defined to be dlogB ne for all

graphs.
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4. compactness: The measure of the deviation from the minimum possible depth given

the degree constraints on the input graph. A tree is perfectly compact if the maximum

depth in the tree is the minimum possible depth. In literature, a perfectly compact tree

is sometimes referred to as complete or full.

5. latency: The delivery latency for any individual vertex is the sum of the path weights

from the source node to that node and is denoted by dT (r, v) ∀ v ∈ V .

6. average-latency: The average latency for all vertices in the tree provides a measure-

ment of the mean time required for delivery and is highly sensitive to differences among

trees. The average-latency of a tree T is calculated as 1
n

∑
v∈T dT (v)

7. maximum latency: The maximum time to deliver, ∀v ∈ V |max(dT (r, v))

8. average non-leaf load: The average out-degree of non-leaf vertices in the tree.

9. diameter: The diameter of a tree is defined as the maximum point to point commu-

nication cost for any two vertices in the tree along the tree paths. The diameter may

or may not pass through the root vertex. This measure is useful for designing group

communication systems that are not based on single source transmission.

10. diameter hops: The number of edges along the path that determines the diameter

of the tree.

Furthermore we consider the connection between these performance metrics and observe

that there are tradeoffs in degree-bounded spanning tree formation, especially considering

maximum depth and average-latency [41]. There is a meaningful relationship between these

two metrics for multicast trees. Empirically, we have demonstrated that as the tree is reduced

in depth, the average-latency measurement increases.
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1.3 Network Modeling - Formal Framework

Our goal in this thesis is to study algorithmic solutions to the multicast problem in the

context of realistic assumptions about underlying network models. There are two prevailing

difficulties with computing solutions to this problem in any distributed system:

1. The defining and modeling of networks measurements

2. Computation and distribution of the multicast tree routes

Since the required input is a complete graph, network latencies must be measured, recorded

and collected in order to perform the tree computation. If the calculation is done cen-

tralized, then there is a single point of failure and a potential bottleneck on the multicast

route determination node. Once the tree is calculated, at a minimum, subtrees must be dis-

tributed so that message delivery can commence. These are, of course, technical challenges

to implementing multicast solutions based on solutions to the minimum average-latency

degree-bounded directed spanning tree problem.

A metric space representation is utilized as it closely models the underlying network

structure and reduces the complexity required in developing theoretical results. Modeling

network as a metric space and/or a graph model is a common practice in multicast tree

research [16, 42, 60, 61]. In order to gather the metric space information we may rely on

network segmentation such as found in [11, 16] in order to reduce the number of latency

measurement pairs that need to be sampled. This would allow for tree calculations to be

done on a network segment basis, reducing the amount of data needed and the time needed

to produce a solution. More details are given in Chapter 5.

In this thesis we consider only metric spaces which obey the triangle inequality, defined as

dm(a, b) ≤ dm(a, c)+dm(c, b)∀a, b, c ∈ V where a 6= b 6= c and dm(a, b) is the distance between

two vertices in the metric space. Such an assumption may not be completely accurate in
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networks. However, the metric serves as a reasonable approximation to reality [16, 42, 60].

In addition, we consider a variety of classes of metric spaces to ensure integrity of the results.

The exact graph topology models used in experimental study are; (1) 2-dimensional

random geometric, (2) transit-stub using the Georgia Tech Internetwork Topology Models

(GT-ITM) generator [67], and (3) high dimensional Euclidean hypercube topologies using `1

and `2 as metric functions. Additional details of the graph topologies studied and used for

experimentation can be found in Chapter 4.

In a practical, distributed network (such as the Internet), some of these assumptions give

way to real world concerns. With increasing size, it becomes less possible to measure the

metric space, and assign global coordinates to hosts on the Internet. Hosts on the Internet in

general to not obey the triangle inequality. However, systems such as Vivaldi [27] have been

used to assign coordinates based on round trip time (RTT) measurements with reasonable

estimates.

The challenge then becomes not gathering the data or assigning coordinates, but rather

we must focus on proper network segmentation to reduce the computational space for tree

calculation. There are many approaches to hierarchical peer-to-peer, hierarchical multicast,

and hybrid application level multicast, such as: XScribe [50], OMNI [16], SplitStream [21],

Tulip [11], the work of Tran et al. [63], as well as other platforms not mentioned here.

For real world deployment we aim to blend existing approaches and leverage hybrid

models. Since the possibility for group membership in general purpose information discrimi-

nation to become quite large, clusters may form naturally. For example play-by-play for the

Olympic hockey finals may cluster naturally with concentrations of subscribers in the home

countries of the teams. We believe that logical network segmentation and introduction of a

hierarchical classification is a natural approach. A case study of the effects of multicasting

and the degree-bounded spanning tree problem on real world systems is presented in Chapter

5.
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1.4 Document Map

The remainder of this body of work details the DC-MAL problem, how this problem relates

to multicasting, a new approximation algorithm as a solution, practical considerations for

deployment, related work, and a discussion of experimental results.

A new solution to DC-MAL, the Myriad algorithm, is presented in Chapter 2, including

pseudocode and analysis. In order to give context to this research, Chapter 3 details the

related work used as both a basis and a benchmark for our theoretical and experimental

advancements.

Details of the experimental methodology employed are given in Chapter 4, giving a full

description of the test software developed and how experiments were conducted using high

performance computing (HPC) clusters. Experimental results are presented and analyzed

in the same Chapter, Section 4.5. In Chapter 5 we present a systems architecture view of

how inclusion of Myriad could proceed for some existing P2P systems and discuss possible

performance gains by doing so.

Final thoughts and forward looking statements are given in Chapter 6.
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Chapter 2

Algorithmic Design of Myriad

Our algorithm for solving the multicast tree construction problem is the result of informed

experimentation and analysis. The techniques used to construct trees and the arrived upon

solution, the Myriad heuristic algorithm, are the result of research that exploits all available

latency information in order to construct a multicast tree (a degree-bounded, rooted, directed

spanning tree) of minimum average-latency.

The obvious solution to providing the minimum average-latency is to actually provide

the minimum latency for each node requesting the multicast delivery. This is of course the

well known shortest path calculation, resulting in a tree if the shortest path is taken from a

specified root. Assuming that the triangle inequality holds for the metric space, we are likely

to end up with a star topology (Figure 2.1), or we can coerce the network to a star topology

by minor adjustments in the coordinates of vertices that are aligned on the same axis from

the root. While at first glance this delivery tree might look acceptable, it is not. There

are several issues at work here. First off, we have overloaded the source node as it must

send the same message to each individual mode, this violates the principles of the degree-

bounded spanning tree and is the exact problem that multicast transmission is designed to

solve. All that has been done in this case is to minimize the path between the source and
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Source

Figure 2.1: Example routing using shortest path calculation, and the resultant star topology.

all destinations, but other factors have not been considered. While the traversal time of the

individual links is optimal, the overall delivery time and load will not be. The source node

is likely to either not be able to provide information in a timely manner or stop functioning

altogether under excessive load.

Our first iteration over a solution started instead with the minimum cost spanning tree

using the latency as cost, and minimizing the sum of all traversals. In experimentation, the

minimum spanning tree based algorithm does not hold up against other existing solutions

due to longer paths being formed, and was later revised. It is possible that a minimum

spanning tree based solution could be used to minimize overall cost where that is a primary

metric.

In order to form a good solution to DC-MAL, we return to the shortest path tree as a

starting point. This allows us to operate within an unconstrained framework where every

vertex starts at an individual optimum in regards to minimum latency, and consequently min-

imum average-latency is also at an optimal value. Of course, the degree-bound constraints

are violated (as shown in Figure 2.1) except where the out-degree constraint is greater than
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or equal to the number of vertices in the graph minus 1, B ≥ |V | − 1. Section 2.2 fully

describes the Myriad algorithm and how it provides an effective solution to this problem.

Any algorithm that uses the shortest path tree as a starting point will be forced to move

vertices from their individual optimums in the starting tree. By definition a vertex that is

not moved from the starting shortest path tree placement is at its optimal delivery point for

the multicast tree. The algorithm that produces the least amount of stretch when adjusting

for degree bound is the algorithm that yields the minimum average-latency.

In order to assist in the discussion of algorithm design, we present some design ingredients

that can be selected and applied in the construction of algorithms. These ingredients became

apparent through the study of DC-MAL and the development of Myriad.

1. Shortest path tree as a starting point

2. Minimum spanning tree as a starting point

3. Clustering, using Euclidean distance

4. Restricting connections to parents nearer to the root

5. Dynamic optimization, by repeatedly modifying the tree, a hill climbing strategy

6. Compactness assurance

Each of these ingredients has a place in the discussion on these algorithms, and we will

use this list to annotate which ingredients an algorithm utilizes. In order to justify the

inclusion of each ingredient we present the motivation of each ingredient.

1. Shortest path tree as a starting point: The shortest path tree is used as a starting point

when latency is a primary optimization factor in the network design. It is possible that

for some networks the shortest path tree does not violate out-degree constraint and is

then, by definition, the optimal solution.
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2. Minimum spanning tree as a starting point: The minimum spanning tree is a useful

starting point if the primary goal is total cost minimization. From this starting point

adjustments can be made to improve things like latency and out-degree bound while

seeking to remain within a budget for total edge cost. None of the algorithms presented

in this work use this ingredient, although the precursors to Myriad operated with the

minimum spanning tree as a starting point.

3. Clustering via Euclidian distance: Some algorithms make use of clustering of vertices.

This technique is used when there is good reason to group a subsection of the vertices

in the graph.

4. Restricting connections to parents nearer to the root: An ingredient introduced by

Myriad under the observation that connecting through vertices not nearer to the root

does not yield better results in the general case. This property is used in the proof of

Theorem 2.1, and gives theoretical bounds and performance.

5. Dynamic optimization: Dynamic optimization is a technique whereby an initial tree

is calculated and later optimized as the graph dynamically changes, and thus what

constitutes an efficient tree will change as well.

6. Compactness: Does the algorithm make a goal of producing a tree of minimum required

height, a compact tree?

Of these design ingredients, Myriad uses three ingredients: the shortest path tree as a

starting point, the restricting of connections to parents nearer to the root, and compactness.

Our experiments also make use of clustering by way of incorporating Myriad into the KLS

algorithm [42], but clustering is not essential to the design of Myriad. During the process

of algorithm development, experiments have been conducted using the minimum spanning

tree as starting point. This design ingredient has been found to be most useful in producing
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minimum total cost degree-bounded spanning trees where cost is a metric function tied to

the sum of edge weights. Of the algorithms studied, only OMNI [16] makes use of dynamic

optimization for multicasting.

2.1 Problem Constraints

The principal constraint placed on this problem is that of the degree bound. For simplicity

we refer only to the out-degree bound B since all hosts (besides the root) have an in-

degree of exactly 1, allowing us to ignore this constant. There are several motivations for

enforcing an out-degree constraint in the multicast application space derived from bandwidth

considerations.

A second constraint placed on solutions to this problem is that of tree height, which

manifests itself in several ways. We can consider either the observed measures of actual

layers in the tree, or the measurement of root to node path lengths (latency). It seems that

each of these measurements plays an important role and we must be mindful of both. In

many cases, there appear to be benefits to producing a tree of suboptimal height [41], but we

do not want to take this to an extreme (force out-degree one, a linear distribution network)

as it has an undesirable impact on average-latency.

Tran et al. [63] provide arguments for both of these constraints. In order to minimize

end-to-end delay, a tree should be kept short, minimizing height. This reduces the number of

paths between the source and all destinations, thus reducing the possible points of failure, and

potentially reducing the sum of the path lengths (although this is largely depending on the

length of the individual paths used). Along the same lines, imposing a degree-bound limits

the bottleneck effects at any given host and also reduces potential effects of a node failure.

We believe that degree-bound is also a necessary constraint for bandwidth, as supported by

the maximum degree of any end host [44].
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Under these constraints we seek to build a multicast tree that does not go over the

degree-bound constraints, and also provides minimum stretch (distortion) in relation to

average-latency for connecting end systems.

2.2 Foundations for Myriad

Here we present a new solution to the degree-bounded minimum average-latency spanning

tree problem. Our new algorithm, Myriad uses a heuristic to form degree-bounded spanning

trees by ensuring that all hosts connect to the source by connecting through a host that is

closer to the root. This helps to reduce latency introduced by deviations from the optimal

path.

We have discovered that forcing the upper levels of the tree to be full, but not forc-

ing a tree of overall minimum height, we are able to achieve better experimental results

in terms of average-latency measurements. Myriad concentrates on producing a minimum

average-latency without forcing a tree of minimum height, and has an optimization step that

optionally derives a tree of low average-latency while guaranteeing a tree of minimum height

(dlogB ne levels). We examined the effects of producing a compact tree over clusters, pro-

ducing degree-bounded spanning trees without regard to hop count, and enforcing a strict

bound on the maximum hop count.

2.3 Myriad

The Myriad algorithm for approximating degree-bounded spanning trees begins by calculat-

ing the shortest path tree from the root. The shortest path tree is then modified using the

heuristic whereby we state that each node must be connected to a parent that is closer to

the root than itself, that is, if a’s parent is b, then dM(b, root) ≤ dM(a, root). Visually, this
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Figure 2.2: Example circular layout, with each node connected to the root through a node
closer to the root than itself.

is represented by concentric circles which are drawn for each radius of a node from the root,

and all nodes are connected to a parent in a circle of equal to, or small radius than the ring

they are a member of (see Figure 2.2). Pseudocode for Myriad is shown as Algorithm 1 on

Page 39, we guide the reader through this pseudocode later. Myriad, as described here, is

a centralized algorithm. We provide some thoughts on how this might be implemented as a

distributed algorithm in Chapter 6.

Throughout the process, nodes that are over their degree bound are relieved of this load

by clearing the current search space (current level) and forcing the load one level lower.

While this guarantees that the current level contains no nodes above the maximum out-

degree, nodes in the next level may now have this characterization and need to be cleared of

extra load.
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Initially, all nodes in the shortest path tree will either be connected directly to the root,

or have a path to the root that connects only through nodes closer to the root (if they are in

the same axis from the root in the `1 metric space). For both the random distribution and

hypercube models studied, the shortest path tree is a simple 2 level star topology instead of

the calculated shortest path tree. Forcing the calculation of the star topology, rather than

computing the shortest path tree provides a reduction in computational complexity.

The relationship of each node always connecting to the root through nodes closer to the

root is kept in effect by correcting the tree one level at a time. For example, starting at the

root (level 1), the closest B children at each vertex are kept as children, while the remaining

children (up to n−B − 1) are made children of the closest B children. The process is then

repeated until all nodes in the tree have ≤ B children at all levels.

There are scenarios that arise where the B closest children to a vertex are not the B

children that are also closest to the root as demonstrated in Figure 2.3. This scenario does

arise in some graphs due to the relaxed rules of the heuristic. In this example, node Y

would normally be the third child of node X, and node Z would be made a grandchild of X.

However, this would violate the organizational rule stating that each vertex be connected to

a vertex that is closer to the root than itself. This is solved by swapping the tree position of

Y and Z. Node Z is made a child of X, and Y is made a grandchild X and a child of Z.

2.3.1 PostOptimization

The Myriad algorithm has an extension called the PostOptimization step that, when run, can

either compact the tree only when improvement occurs, or force the tree to be of minimum

possible height as determined by the out-degree bound and number of vertices in the input

graph (dlogB ne). After the base Myriad algorithm has completed, the tree is compacted

by examining the tree in breadth-first search order, starting with the root. Any vertex

encountered that has an out-degree < B is brought up to an out-degree of B by promoting

23



X

Y
Z

X

Y
Z

Figure 2.3: Example correction, when a node’s B closest children are not the 3 closest nodes
to the root (with a maximum out-degree of 3).

a sub-tree. If the node being examined is at level i, sub-trees rooted in levels ≥ i + 2 are

considered potential children. The promotion which causes the smallest increase to average-

latency is the transfer enacted in the current tree. This procedure guarantees a final tree

of minimum height, at the expense of increased average-latency. The procedure for for the

post optimization step is presented as Algorithm 2 on Page 40.

2.3.2 Pseudocode Guide

Here, we provide a guide to the reader to assist with the understanding of the details of how

Myriad operates and provide sufficient information for new implementations of the algorithm.

These guides refer to the pseudocode as listed in Algorithms 1, 2, and 3.

Guide for Myriad

Since the implementation of Myriad is largely based on the manipulation of sets, we give a

quick reference list of what each set means as used in Algorithm 1, Page 39).
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• overloadedSet - The current set of all vertices v ∈ V whose out-degree in the overlay

tree is larger than B. This set is first introduced on line 2 and is updated on each pass

through the loop.

• curLevelSet - A set of all vertices that are in the current level of the tree being

processed. These vertices will be inspected for being over the out degree bound, but

will not be moved from the current level. This set is introduced on line 5 and is

reinitialized for each level as processing progresses.

• fixed - The fixed set is the set of vertices that are children of the nodes in the

curLevelSet. A node is added to the fixed set if it is one of the closest B children

of their parent.

• toMove - If a child of a node in the curLevelSet can’t be put in the fixed set, then

it is placed in the toMove set.

The input to Myriad is a complete graph or subsection of a graph, annotated as the

set V . In our implementation each vertex is aware of its out edges, their weight, and has

the ability to get a reference to the connecting vertex. Our graph implementation allows for

easy calculation of an individual vertex’s parent and separation of overlay versus non-overlay

edges. The r parameter to the algorithm is the source of the communication and the root

of the result tree. B defines a uniform out-degree constraint for the tree, however, in our

implementation the out-degree is vertex specific and is part of the vertex data structure.

Myriad (Algorithm 1, Page 39) begins by calculating the shortest path tree, rooted at r,

over the vertex set V . Dijkstra’s algorithm for shortest path calculation is used [31]. Because

of how our graph abstract data type is implemented, this information is easily stored at a

vertex level and retained for further calculation. Our implementation also includes an option

for forcing a 2-level start topology and forgoing the more complex shortest path calculation.
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On line 2 (and later 24) a call is made to the findOverloadedVertices method. This

method performs a breadth-first search on the tree and returns a set of vertices that currently

have an out-degree > b. Execution of this algorithm progresses until the overloadedSet is

empty. Since organization of the tree proceeds form the top level down, the level variable

is initialized to 1, since this is a 1 based numbering of tree levels.

In order to assist in implementation speed, each vertex is also assigned an integer that

represents its current depth in the tree. The nodesInLevel method on line 5 makes use of

this fact, although this could just as easily be accomplished with a depth-first tree traversal.

By isolating nodes in the current level to the curLevelSet, we are isolating the particular

vertices that may need to be relieved of excessive out-degree. If there is no intersection

between the curLevelSet and the overloadedSet (line 6), we simply move down the tree

to the next level and recalculate the overloadedSet (line 24).

Assuming there is in intersection of the curLevelSet and the overloadedSet on line

6, we begin processing the current level. Two sets, fixed and toMove, are initialized and

kept empty. These sets will be used to hold vertices which should not be moved from their

current position unless absolutely necessary as part of a swap (line 17) and vertices that

must be moved to correct out-degree constraints respectively.

On line 8, the main processing loop for the current level begins. The goal here is not

to immediately put all vertices in their best location, but rather to select the best possible

vertices to be in the next level (level + 1). Each vertex in the curLevelSet is processed,

and order is unimportant. If a vertex currently has a degree bound higher than B (line

9), the closest B children of that vertex are added to the fixed set. This makes them

candidates for accepting overloaded vertices from the toMove set. All other children of the

current vertex being examined are placed in the toMove set which will force them to (1) stay

in the same level and move to a different parent or (2) move 1 level lower in the tree. If a
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vertex in the current level is below the out-degree constraint of B, that vertex is also added

to the fixed set, allowing it to gain children during the next phase.

After the current level has been processed, we move on to find a new location in the tree

for vertices that have been placed in the toMove set (loop starting at line 15). For each

vertex in the toMove set, we assign it to the closest vertex in the fixed set. If a situation

occurs that the vertex can not be assigned (line 17), as shown in Figure 2.3, a swap occurs

in order to keep the rules of Myriad in place.

Myriad terminates when no overloaded vertices remain in the tree. At this point, there

is no guarantee that the tree will be of minimum height, for this the PostOptimize step is

needed.

Guide for PostOptimize

The PostOptimize (Algorithm 2, Page 40) step is always run after Myriad has constructed

a tree. This method takes in a multicast tree T , the root of that tree r, and the out-degree

B. The fourth parameter, forceCompact, is a boolean value that indicates if the tree should

be reduced in height only when improvements in average-latency are found (when false) or

if the tree should be reduced in height until the tree is at minimum height. Even when a

tree of minimum height is produced, there is no guarantee that leaves will occur only in the

last two levels of the tree.

The outer loop of the algorithm executes once for each level in the tree, starting with

level 1, the root. Since the tree is compacted as the loop executes, we can be guaranteed that

the loop will only execute at most dlogBbe times, the minimum required height, as noted in

the invariant on line 2. Based on the current level numbering processed we identify a set of

potential vertices to consider for relocation. The inner loop then repeats for each vertex in

the current level, in breadth-first search order where edges are searched in ascending weight

order.
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For each vertex, a candidate move set is initialized and inspected to find the best move.

The procedure for determining the candidate move set is Algorithm 3 and is detailed in the

next section. We start by assuming that there is not a better move that can be made (line

6) and that any average-latency improvement must be positive in magnitude (line 7). If a

compact tree is desired, we simply adjust the minimum improvement threshold to be − inf,

allowing for a negative “improvment” to average-latency.

We now examine each vertex in the movers set (line 9) to determine the effects of relo-

cating each vertex to be a child of the current parent being inspected by the loop on line 3.

The calculations from line 12 through 17 calculate the current average-latency in the subtree

rooted at m (current movers vertex) in its current position and what the average-latency

in the subtree would be if m was pulled up. If this improvement is the best improvement

known on this pass, it is saved. After the loop, the best improvement to average-latency,

or lowest increase to average-latency for a compact tree, the vertex change is made (lines

27-28).

Guide for getCandidateMoveSet

In order to identify which vertices might be used to compact the tree are identified by the

getCandidateMoveSet procedure (Algorithm 3, Page 41). This process starts by identifying

vertices that are currently two levels below the current level being processed, with the tree

T , root T , and current level being inputs to the method. If a compact tree is desired, the

search space is extended to include vertices that are three levels below the current level (lines

2 and 3), otherwise the search space is expanded to include all vertices. This is done since a

non-compact tree can focus solely on looking for the best improvement for average-latency,

while the compact version need to focus on pulling up a larger subtree.
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2.3.3 Sample Run of Myriad

Here, we provide a step by step example of how Myriad organizes vertices in a graph. The

first step is to calculate the shortest path tree, which is the starting point for Myriad. Figure

2.4 shows a sample graph after the shortest path tree has been calculated.

Progressively each level is examined for vertices that are overloaded, and those vertices

are moved to be children of vertices in the fixed set. These vertices might be other members

of the same level or moved to a lower level in the tree. On the next three pages, a graphical

representation of the execution of Myriad is shown.

• Figure 2.4 - Starting tree, the shortest path tree calculation

• Figure 2.5 - Level 1 (the root) is cleared of excessive load

• Figure 2.6 - Level 2 is cleared of excessive load

• Figure 2.7 - Level 3 is cleared of excessive load

After level 3 is cleared of excessive load, there are no more overloaded vertices in the graph,

so the algorithm terminates.
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Figure 2.4: Myriad step 1 - the shortest path tree from the root is calculated.

Figure 2.5: Myriad step 2 - Level 1 (the root) is adjusted to obey the out-degree bound.
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Figure 2.6: Myriad step 3 - Nodes in level 2 (children of the root) are cleared of excessive
load.

Figure 2.7: Myriad step 4 - Nodes in level 3 are cleared of excessive load.
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2.3.4 Stretch

Stretch is defined as the ratio of distance to the root in the constructed tree over the shortest

path distances, or, the optimal placements in the tree. For graphs embedded in a metric

space obeying the triangle inequality, the optimal placement in any tree that does not obey

out-degree constraints is the same as the vertex placements along the shortest paths. In this

case, maximum stretch bounds the distortion incurred by running Myriad. We have also

shown a new upper bound for distortion in hypercube networks (below).

Stretch in Myriad

By Theorem 2.1, it follows that the maximum stretch for any vertex in a tree produced by

Myriad is bounded by the depth of that vertex in the tree. Let r represent the root of T ,

dm(v, r) represents the metric distance from v to r, dT (v, p) represent distance in the tree to

v from an ancestor p, h(v, p) represent the depth of v in the tree from p, and let k substitute

for h(v, p)

Theorem 2.1. Myriad produces a tree T = (V, E), with maximum out-degree B, such that

the maximum stretch for any vertex v ∈ V is at most dT (v,r)
dm(v,r)

≤ 2(k + 1) = 2 ∗ maxdepth

where k is the level in the tree, or O(h(v, r)). This theorem holds for all metric spaces that

obey the triangle inequality.

Proof. By definition, the root r is under no stretch.

By definition, the direct children of the root r are under no stretch, and connect with their

minimum distance, dm(v, r), via direct connection.

For all other vertices, v ∈ V , their connection (by definition of the algorithm) must con-

nect to the root through a parent, p, that is closer to the root in the metric space (i.e.,

dm(v, r) ≥ dm(p, r)). The tree distance dT (v, r) = dT (v, p) + dT (p, r). Let v be at level

K > 1 of the tree. We have the following;

32



dT (v, r) = dT (v, p) + dT (p, r) (2.1)

≤ dT (v, p) + 2 ∗ k ∗ dm(p, r) (2.2)

≤ 2 ∗ dm(v, r) + 2 ∗ k ∗ dm(p, r) (2.3)

≤ 2 ∗ dm(v, r) + 2 ∗ k ∗ dm(v, r) (2.4)

≤ (2k + 2) ∗ dm(v, r) (2.5)

≤ 2(k + 1) ∗ dm(v, r) (2.6)

Equation 2.2 follows from 2.1 since any vertex in the tree must connect to the root through

a parent p (and thus all ancestors) closer to the root. The maximum stretch for vertex p is 2

times the depth in the tree and the distance of that vertex in the metric space by inductive

hypothesis.

Equation 2.3 follows by the heuristic and the triangle inequality.

Equation 2.4 follows from the inequality dm(v, r) ≤ dm(p, r). This must be true for v to be

a child of p, otherwise the two vertices would see a role reversal by the rules of Myriad.

Equations 2.5 and 2.6 follow by the factoring of terms.

Thus the maximum stretch for a vertex is bound by ≤ 2(k + 1) = 2 ∗ h(v, r).

Conjecture 2.1. Following from Theorem 2.1, if a compact tree can be formed using the

Myriad heuristic and Myriad produces a perfectly compact tree, the maximum depth of a

vertex v is bound by d logB(|V |) e. It follows that the maximum stretch in a tree produced

by Myriad for any vertex v ∈ V is 2 ∗ d logB(|V |) e ⇒ O(logB(|V |)).

We label Conjecture 2.1 as such because in order to facilitate better compact trees we

allow the compaction step, when a minimum height tree is desired, to deviate from the

heuristic of always connecting to a parent closer to the root. These deviations are only taken
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in the event that average-latency for a subtree is improved by breaking the rule of always

connecting closer to the root. We have experimented with a variant of Myriad that strictly

enforces the connection heuristic, and by those experiments believe the above conjecture to

be true.

Distortion in Hypercubes

Given a discrete metric space M , the T -distortion induced by a rooted spanning tree T is

simply the ratio of the average-latency (equivalently, total distance) to the root in the tree T

divided by the average shortest distance to the root given by the metric M . Define the TB-

distortion of a metric M as the minimum value of the T -distortion over all B-ary spanning

trees (and thus satisfying a degree bound of B + 1). For the hypercube metrics we have the

following lower bound results on the TB-distortion of Hp
2n . The Hp

2n hypercube is defined

such that the `p metric function is used and there are 2n nodes (n bits of representation).

Theorem 2.2. The TB-distortion of the metric Hp
2n is Ω(n1− 1

p /lnB).

Proof. A lower bound for the TB-distortion is obtained by calculating the ratio of the sum

of minimum possible path lengths in any B-ary spanning tree divided by the sum of the

shortest distances to the root node in the metric. In any B-ary spanning tree of the metric

Hp
n, the minimum possible average hop-distance to the root is at least logB2n − 2. Also,

the average distance in the metric is seen to be at least 1
2
(n/2)

1
p . This follows since at least

half the nodes of the hypercube are (metric) distance (n/2)
1
p from the root node. Thus the

TB-distortion is at least cn1− 1
p /lnB for some constant c > 0; and the theorem follows.

The result above does not provide a meaningful bound for the TB-distortion for the usual

hamming metric, p = 1. In fact, for B = 2 the well known doubly-rooted binary tree

embedding in H1
2n (see [46]) shows that the T2-distortion of H1

2n is Θ(1). It is not difficult
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to show that this Θ(1) result extends for all B that are powers of 2. We leave as an open

problem whether or not this result extends for other values of B.

2.4 Analysis of Myriad

Myriad (Algorithm 1) as presented, begins with a straight forward implementation of Dijk-

stra’s algorithm for shortest path calculation, with a running time of O(|V |2). If we modify

the shortest path calculation to simply return a strict star topology (2 level), we can reduce

this step to an O(n) operation. In practice, this simplification provides the same final re-

sult for graphs in R
2
n. For experimentation, we use advance knowledge of the topology to

determine if Dijkstra’s algorithm or a simple star topology algorithm should be run.

We make the assumption that the points in the cluster are randomly distributed and

are not along the same axis from the root. We can solve the problem of two nodes on

the same axis by nudging one, forcing a 2 level star topology. This allows us to focus on

non-degenerative cases for analysis.

The outer loop of the algorithm repeats until the overloaded set is emptied. Each pass

through the loop, one level is cleared of overloaded nodes, by overloading nodes in the next

level, requiring Ω(logB n) iterations if we force the tree to be balanced or compact in this

step. Since we do not force the tree to be balanced or compact, the worst case for this loop

is n. We can be guaranteed that there will not be n iterations, otherwise there would be no

vertices over the out-degree constraint. On average, for randomly distributed points in R
2
n,

this loop will evaluate on the order of O(n), while in practice executing fewer times..

The first inner loop (line 8) executes once for each vertex in the current level, this is

a fixed quantity that grows within known limits for each level, and is represented by the

summation
∑logBn

l=1 bl = b(n−1)
b−1

. While this quantity decreases, it is still on the order of O(n).

Inside of this loop, a heap is built for the ordering and selection of vertices with this operation

35



having a runtime of O(ln(n)). The second inner loop (line 15) executes once for each possible

vertex in the move set. This is bound by the number of vertices below the current level,∑logBn
l=1 n − bl = n ∗ logBn − n−1

B−1
− n + 1. The dominating factor of the inner loops is the

first with the internal heap structure, giving a total running time of O(n ∗ ln(n))

In the worst case, considering the entire Myriad algorithm, the average running time of

the algorithm is in the class O(n2 ∗ ln(n)), assuming that the 2 level star topology is used

as a starting calculation.

2.5 Clustering And Filtering

We begin by examining the KLS algorithm [42], which uses node clustering to segment the

network, internal cluster organization, and then meta cluster organization for a final result.

We examine the effects of using the Myriad as the internal cluster organization method for

KLS, as well as comparing the algorithms individually, and against other algorithms in the

area (experimental methodology and results are presented in Chapter 4).

The KLS algorithm is an approximation algorithm for solving the degree-bounded min-

imum diameter spanning tree problem, and begins by forming clusters of nodes through

filtering. The algorithm proceeds by performing a binary search to determine the best value

for ∆, the estimated diameter of the degree-bounded spanning tree. Cluster representatives

are then chosen iteratively by selecting the vertex that covers the most uncovered vertices

within a radius of 3α, where α = ∆√
logB n

. The α threshold represents the difference be-

tween long and short edges in the graph, this allows a limit to be imposed on the number

of short edges and long edges in the final product, giving a bound of O(
√

logB n ∆) on the

diameter of the produced degree-bounded spanning tree [42]. The final approximation tree

is composed of clusters containing only short edges, joined together by long edges.

We examine the effects of changing how the clusters of short edges are organized, provid-
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ing a significant improvement in runtime result according to the criteria set forth in Section

1.1. In their proof, Kanemann et al. [42] state that the cluster local structure must be a

spanning tree of the nodes belonging to the cluster of minimum height. This relies on the

fact that any edge used to join nodes within a local cluster will not be longer then 2r (where

r is the radius of the cluster, 3α) as long as the triangle inequality is in effect. Theorem 2.3

states the upper bound on distance from the root, for any node in a local cluster.

Theorem 2.3. Given any complete metric M and a root node r, let d(v) = dM(v, r) be the

distance from v to r in M . There is a compact B-ary spanning tree such that every node v

has a tree distance dT (v) to the root that is bounded by 2∗depthT (v)∗d(v) = O(logB n)∗d(v).

Proof. It is always possible to construct a B-ary spanning tree with the property that each

node’s parent is no further from the root than the node itself. This can be done by simply

sorting the nodes by their distance to the root and creating a compact B-ary tree T whose

breadth first traversal respects this ordering. The proof will follow with compaction of

the depth of nodes. The root r clearly satisfies the statement of the Theorem. Now let us

consider v 6= r. Let us consider the distance dT (v). We have that dT (v) ≤ dM(v, u)+dT (u) ≤

dM(v, u) + 2 depth(u) ∗ d(u) using the inductive hypothesis, where u is the parent of v. By

the triangle inequality we have that dM(v, u) ≤ dM(v, r) + dM(r, u). A direct calculation

shows that dT (v) ≤ 2 ∗ depthT (v) ∗ d(v) and the result follows by induction. Again, note

that compact B-ary trees formed on n nodes will have depth at most dlogB ne.

This allows us to state that the total number of edges that contribute to the diameter of a

cluster is bounded by O(logB n). We have studied various methods for organizing the clusters

in the KLS algorithm and examine the cost of building a tree that minimizes average-latency

versus building a tree that minimizes the maximum depth for leaves in the tree. We have

measured the performance of our Myriad algorithm (with and without forcing a compact

tree) in the context of KLS clusters and on the entire network, without clustering. While
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clustering and filtering provides for lower computational complexity and aids in the ability

to produce a distributed algorithm, the resultant trees do not exhibit lower average-latency

when compared to the non-clustering version of Myriad in both its compact and non-compact

forms.

Let us first consider a system for naive construction of trees obeying Theorem 2.3. An

algorithm can be constructed that uses the fact that no matter which edges are used in the

construction of the local tree, the maximum distance from the root will still be O(rdlogB ne)

since the tree is compact. In this case, the tree is built by adding nodes to the tree in the order

of their distance from the cluster representative (breadth-first search order). Consequently,

this organization algorithm is runtime efficient, forming an out-degree B tree of minimum

height with a runtime of O(n). However, the average-latency of trees formed through this

method are not as efficient as they can be. The resultant trees do fall within the mathematical

bounds set forth above and in [42] for local clusters and feed into the larger problem when

the clusters are combined to form a final tree.
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Algorithm 1 Myriad( V , r, B ): Organize the vertices V into a tree with root r and
maximum out-degree B by optimizing the shortest path tree and enforcing that each node
has a parent closer to the root than itself.

1: shortestPathTree( V , r )
2: overloadedSet ← findOverloadedVertices( V , r )
3: level← 1
4: while overloadedSet 6= ∅ do
5: curLevelSet ← nodesInLevel( V , r, level )
6: if overloadedSet ∩ curLevelSet 6= ∅ then
7: Set fixed, toMove ← new Set
8: for all currentVertex ∈ curLevelSet do
9: if currentVertex ∈ overloadedSet then

10: The closest B children of currentVertex are added to the fixed set, the rest are
added to the toMove set.

11: else if currentVertex.outDegree < B then
12: fixed.add( currentVertex )
13: end if
14: end for
15: for all moveVertex ∈ toMove do
16: Connect moveVertex to the closest vertex in the fixed set that is also closer to the

root.
17: if moveVertex can not be moved then
18: Swap moveVertex with a sibling that is farther from the root than moveVertex.
19: end if
20: end for
21: else
22: level← level + 1
23: end if
24: overloadedSet ← findOverloadedVertices( V , r )
25: end while
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Algorithm 2 PostOptimize( T, r, B, forceCompact ): Take a previously calculated
multicast tree T (output from Myriad, Algorithm 1) and force the tree to be of compact
height, defined as dlogB ne, where n is the number of vertices in the original graph, and B
is the maximum out-degree of each vertex. forceCompact is a boolean that indicates if the
algorithm must run until the tree is compact, otherwise the post optimize step will only
make changes that reduce the average-latency of T .

1: for all level ∈ T , starting with the root, level 1 do
2: // INVARIANT: No matter how unbalanced the input tree is, this loop will only

execute up to the maximum number of required levels in the tree.
3: for all vertex V ∈ the current level of T in breadth-first search order do
4: movers← getCandidateMoveSet( T , r, level)
5: while out degree of V is less than B do
6: moveImprovedV ertex← nil
7: improvement← 0
8: improvement← −1000000 ifforceCompact
9: for all vertex m ∈ movers do

10: if m.parent 6= V then
11: // Here we are seeing if we can improve the average subtree latency, or the

minimum increase to average subree latency at m
12: averageSTL← averageSubtreLatencyFrom( m )
13: toLRoot← pathWeightToRoot( m )
14: totalSTL← averageSTL ∗m.subtreeSize + toLRoot ∗m.subtreeSize
15: // what it could be
16: potentialToRoot← pathWeightToRoot( V ) + V.egeTo(m).weight
17: newSTL← averageSTL∗m.subtreeSize+potentialToRoot∗m.subtreeSize
18: if potentialToRoot < totalSTL or forceCompact then
19: diff ← totalSTL− newSTL ∗m.subtreeSize
20: if diff > improvement then
21: improvement← diff
22: moveImproved← mover
23: end if
24: end if
25: end if
26: end for
27: if moveImproved 6= nil then
28: make mostImproved a child of V
29: else
30: break // can’t improve anything else at V
31: end if
32: end while
33: end for
34: end for
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Algorithm 3 getCandidateMoveSet( T, r, level, forceCompact ) : A sub-procedure
of the PostOptimize function. Based on the level being processed, returns a field of candidate
vertices for pulling up, starting with nodes at least 2 levels below the one being processed.

1: movers← getVerticesAtLevel( T , r, level + 2 )
2: if forceCompact then
3: movers→ movers∪ getVerticesAtLevel( T , r, level + 3 )
4: else
5: inc← 2
6: field← getVerticesAtLevel( T , r, level + inc )
7: while field 6= ∅ do
8: movers← movers ∪ field
9: inc← inc + 1

10: field← getVerticesAtLevel( T , r, level + inc )
11: end while
12: end if
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Chapter 3

Related Work

Here we give specific focus to related work pertaining to the algorithms that are studied

experimentally when compared to Myriad. Additional related work pertaining to the systems

level and applications of algorithms such as Myriad can be found in Chapter 5.

The three algorithms that we focus on are:

• KLS [42]

• MDDBST [60]

• Overlay Multicast Network Infrastructure (OMNI) [16].

Details of each of these algorithms are given in relation to their original description and how

they relate compare Myriad and potential hybrid solutions.

Multicast distribution routes can be represented by a rooted, directed spanning tree.

These trees can be imposed by the physical network structure as in IP multicasting, or

derived by an algorithm in the context of a logical network structure. The problem of

constructing such a rooted tree which covers all subscribers is complicated by the need

to balance network resources while optimizing the servicing of the communication group.

In order to enable real-time or near real-time delivery for bandwidth intensive multicast
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communication streams (such as a live video broadcast), the multicast distribution tree

must have a bounded out-degree in order to allow for smooth playback/presentation of the

material for subscribers. For example, a client with a peak upload bandwidth of 128Kbps

participating in an overlay multicast requiring 48Kbps can only relay the communication to,

at most, two additional participants.

This leads us to study the minimum average-latency degree-bounded directed spanning

tree problem, a well known NP-hard problem [19]. Recent works propose approximate solu-

tions to this problem [16, 59, 60]. This work differs slightly in the study of this problem, in

that we focus on the additional constraint of minimizing the depth or hop count from the

source in the message distribution. Hop count and time-to-live (TTL) bounds are important

in the design of communication protocols, particularly at the application-level, in order to

minimize congestion in unstructured networks (see e.g., [15]). We consider each of the fol-

lowing algorithms for comparison to Myriad as described in the experimental methodology

set forth in Chapter 4.

3.1 KLS

Kanemann et al. [42] present an algorithm (hereafter referred to as KLS) for approximating

the degree-bounded minimum diameter spanning tree problem. The mechanism used in

the KLS algorithm works by a process of clustering and filtering, and for complete metric

networks produces a spanning tree with an approximation ratio of O(
√

logBn) for diameter,

where B is the degree bound and n is the number of nodes. Diameter is used as a primary

optimization metric as it is assumed that any pair of nodes in the network would initiate

communication with each other. Degree constraints are modified by “quality of service and

technological constraints” [42], what we have been referring to as bandwidth limitations.

The bounded degree minimum diameter spanning tree problem (BDST) is defined such
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that given a complete graph G = (V, E) where edges obey a symmetric length function

and an out degree B ≥ 2, produce a tree T with maximum node-degree B and minimum

diameter. The minimization metric is exactly defined as:

∆(T ) := maxu,v∈V distTl (u, v) (3.1)

which is simply the maximum distance in the tree T between any two verticies u, v ∈ V

when using the metric function defined by l.

KLS functions by performing a binary search over a field of estimated diameter values,

where the estimated diameter is denoted by ∆, while producing a tree of diameter no more

than O(
√

logB n)∆. In our implementation we start by setting delta to the length of the

shortest edge between any two vertices in the metric space. This value is then multiplied

by 2 in repetitive bases through the algorithm until ∆ is greater than the the length of the

shortest edge times the number of vertices in the graph, or until the algorithm only produces

one cluster during execution.

The main body of the algorithm executes as such. A threshold value α is initialized to

∆/
√

logB n. Clusters are then formed based on a coverage radius of 3α. Given the nodes

not yet assigned to a cluster, a representative is chosen based on the maximum coverage of

unassigned nodes. This process repeats until all nodes have been assigned to a cluster. Meta-

organization is done on the clusters at this point, forming a hierarchy over the unorganized

clusters. The largest cluster is the “root cluster,” and all other clusters are assigned a parent

in size order. In our experiments, this is often a 2 level tree over the clusters.

To round out the algorithm, the internal structure of the local clusters is set. This local

structure is done such that the cluster itself is of minimum height. While Kanemann et al.

[42] show that there is a maximum number of edges involved, we have shown a bound for
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maximum distance from the root for any node in a local cluster (or compact tree in general)

in Theorem 2.3.

This leaves us the ability to insert any compact tree algorithm for local cluster organiza-

tion. Thus, in our experiments we examine a quick breadth-first search based construction

and using Myriad for cluster organization as described in Chapter 4.

3.2 MDDBST

The MDDBST algorithm comes from work presented by Shi et al. [60] and is positioned as an

application-level multicast organization algorithm in a similar fashion to Myriad. MDDBST

is closest competitor to Myriad in terms of average-latency measurements, but produces

trees of much greater depth (Chapter 4).

The design goal for MDDBST is to create a tree of minimum average-latency (categorized

as delay optimization) with bandwidth limitations manifested as degree constraints. The

delay optimization is categorized as a diameter minimization problem in a similar fashion to

[42]. By the theorem stated in [60] the decision version of finding such a tree is NP-complete,

and the optimization problem is an NP-hard problem.

The heuristic algorithm, MDDBST, is a greedy algorithm that functions in a similar

fashion to Prim’s algorithm for calculating minimum spanning trees. MDDBST requires an

input graph G = (V, E) that has a complete cost metric c(u, v)∀u, v ∈ V and a degree con-

straint dmax(v)∀V . As with Myriad, MDDBST does allow for variable out-degree among the

vertices, but our experiments use a consistent degree bound to garner the best comparisons.

MDDST proceeds by starting with a single node tree (the root) and looping once for each

additional vertex v ∈ V until all vertices are in the result tree T . On each pass, each vertex is

updated to calculate the longest distance required to connect that vertex to a vertex already

in T , considering the degree constraints of the vertices in T . After the maximum distance to
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connect all remaining vertices is calculated, the minimum required edge distance is selected.

The process then repeats.

3.3 OMNI

From an implementation standpoint, OMNI [16] is the most difficult to implement since it is

described as a distributed algorithm. OMNI is a two-tier system requiring an infrastructure

of dedicated Multicast Service Nodes (MSNs [59]), and clients connect directly to a multicast

service node or organized using some other technique. In a similar fashion to the algorithms

mentioned so far, degree constraints are observed for the MSN set, as motivated by band-

width utilization. The ultimate goal of OMNI is to produce a degree-bounded spanning tree

of minimum average-latency and minimum maximum-latency over the MSN set.

OMNI is initialized by creating a binary tree in which vertices are placed in the tree

by their ascending distance from the root. After that, there are dynamic optimizations

that occur in parallel at each vertex. For simulation, we have constructed a non-distributed

version of OMNI that simulates the distributed version of the algorithm.

Dynamic transformations in OMNI are categorized by local transformations and proba-

bilistic transformations. The local transformations are defined as follows:

• Child-Promote: If an MSN has available degree, one of its grandchildren is promoted

to be a direct child, subject to the constraint that average-latency is improved for the

subtree.

• Parent-Child Swap: A parent and child are swapped in the tree (the current subtree

rooted at the child are not moved) if the operation will improve the average-latency.

• Iso-level-2 Swap: Two MSNs are the same level in the tree swap their positions, the
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two nodes must have the same grandparent in the tree. The operation is performed if

the average-latency is improved.

• Iso-level-2 Transfer: Moves an MSN to a different parent, keeping that node in the

same level, with the same grandparent. Since this is not a swap, the operation must

find a transfer spot that has available out-degree and improves average-latency.

• Aniso-level-1-2 Swap: A swap of two MSNs (i and j) such that the parent of i is the

grandparent of j and average-latency is improved for the subtree.

The local transformations are designed to achieve local minima, but do not consider global

concerns. Probabilistic transformations address global concerns by performing random swaps

taking into consideration the client population at each MSN vertex.

3.4 Comparison with Known Bounds

Table 3.1 shows the currently known theoretical bounds for the algorithms studied. Bounds

are not known in all categories for all algorithms. The Myriad algorithm has a latency bound

of O(logB n r) (for compact trees, by Corollary 2.1), where r is the radius of the graph. Let

r represent the radius of the metric space such that r = maxdm(x, y)∀x, y ∈ V . Forcing a

compact tree with Myriad also gives a bound on the maximum depth (hop count + 1). This

bound is O(logB n) and is equal to the minimum depth required to form a tree of out-degree

B over n nodes, dlogB ne.

Let ∆∗ represent the minimum diameter of a spanning tree over G.
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Table 3.1: Known theoretical bounds for the algorithms studied. For latency bounds, r is
half the maximum distance between two vertices. For the KLS algorithm, ∆ is the estimated
diameter of the spanning tree. Results for OMNI are presented in [16], and results for KLS
are presented in [42].

Algorithm Max Hops Maximum Latency Average Latency Stretch

Myriad (Compact) O(logB n) O(logB n r) O(logB n r) O(logB n)
KLS [42] w/ Myriad O(logB n) – – –

MDDBST [60] – – – –
OMNI [16] O(log2 n) O(log2n r) – –

KLS [42] O(logB n) O(∆∗
√

logB n) – –
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Chapter 4

Experimental Methodology and

Experimental Results

In order to asses Myriad’s ability to construct multicast trees, we consider a strategy of

repeated experiments over many network topologies and compare the performance in a study

of 6 algorithms:

1. KLS [42]

2. Hybrid, KLS with Myriad

3. Myriad

4. Myriad, with compaction

5. MDDBST [60]

6. OMNI [16].

Each of these algorithms is tested using several types of metric spaces, including two di-

mensional random topologies in the Euclidean plane, internet-like topologies generated by

GT-ITM [67], and high dimensional hypercube network topologies. Within each of the
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topologies, the network size and out-degree bound are varied in order to capture a wide

range of data. Details of the experimental setup follow.

The experimental methodology is imperative in the development of the Myriad algorithm.

We used a process of informed analysis, algorithm design, and testing in a repetitive, iterative

fashion. Constant observation of the running algorithm through interactive visualization and

analysis of output allowed for continual refinement of the solution. Testing improved the

Myriad because of the volume of test data that we were able to examine. By using different

visualization techniques, we were able to see where Myriad was not making the best decisions

and alter the algorithm.

Here, we describe the GraphSim software that we have built and its uses in experimen-

tation (Section 4.1). Then, the different graph and network topology models are shown

(Section 4.2). Lastly, we detail the approach taken in the experimental study, including the

input parameter field and conditions (Section 4.4).

4.1 GraphSim as an Experimental Testbed

To aid the investigation of DC-MAL and the development of the Myriad algorithm, we

have developed a graph simulation framework called GraphSim. GraphSim is at the core an

implementation of the graph abstract data type. There are two distinct implementations, an

object-oriented graph model and an implementation that uses bit labels (described later).

GraphSim is written in the Java programming language, and makes extensive use of the

interface language construct, allowing algorithms to be written once and tested against

different implementations. This is precisely how experiments are conducted on different

topologies requiring different internal representations.

The basic architecture of GraphSim is to separate the graph interface, implementations,
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algorithms, analysis utilities, and topology generators. This modular approach has allowed

for agility within the framework and quick changes in the process of experimentation.

The first graph implementation developed is the object-oriented graph implementation.

It supports named vertices as well as undirected and directed edges. A network with asym-

metric latencies can be simulated by creating a graph with directed edges between two

vertices and assigning different weights to the edges. This implementation also supports a

concept called ‘layers.’ Layers allow the same graph to be quickly cloned so that multiple

algorithms can be run either sequentially or in parallel over a graph.

A graph implementation based on bit labels (called BitGraph) has been added in order

to reduce the memory footprint required to represent exceptionally large graphs. Vertices

are represented by anywhere from 2 to 32 bits, with that bit string serving as both the label

and the position in a high dimensional space. Two different metrics over the vector space

n are considered, the `1 norm and the `2 norm (it is not difficult to extend to any `p). By

definition, both of these norms obey the triangle inequality. Either of these metric functions

allow us to represent a high dimensional hypercube topology with minimum storage.

The `1 norm is defined as the hamming distance, or the count of the number of positions

by which two bit labels differ. From an implementation standpoint, this is the number of 1

bits in the xor of the two bit strings. The Euclidean `2 norm is simply the square root of

`1. Since edge distances are calculated at runtime, the BitGraph implementation can accept

custom objects implementing any given symmetric distance metric.

Both the object-oriented and bit based graph implementations allow for individual edges

to be marked as overlay edges. This allows for an algorithm to leave the entire graph in

place while marking which edges participate in a given solution (spanning tree, multicast

tree, tour, etc.). These overlay edges can also be easily reset, allowing for execution of

different algorithms on the same graph object without requiring the graph to be created

multiple times.
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GraphSim contains a collection of graph algorithms and is easily extendable using the

provided abstract class, GraphAlgorithm. Each graph algorithm simply extends this ab-

stract class, and it then becomes possible to execute algorithms and chain the executions

of algorithms using the command pattern [33]. The suite of included algorithms in includes

classes for:

1. Calculating average subtree latency in the overlay

2. Calculating the diameter of an overlay

3. Finding the longest edge in the graph or overlay

4. Finding the shortest edge in the graph or overlay

5. Calculating the minimum spanning tree

6. Calculating a rooted shortest path tree

7. Myriad [41] (with and without compactness)

8. MDDBST [60]

9. OMNI [16]

10. KLS [42]

as well as other algorithms used to compose those stated above and for measurement of

graphs and overlays on those graphs.

In order to assist with algorithm development and understanding, GraphSim includes a

set of visualization tools. Graphs can be viewed in a scaled 2 dimensional coordinate space,

live, as algorithms run. This same visualization can be set to output image files displaying

the results or progress of an algorithm. GraphSim is also capable of creating graphs in the

DOT file format that can be rendered by GraphViz [4].

52



Experiments using the GraphSim framework can be executed in parallel on a cluster

computer. A self contained client/server mechanism is available for coordination and scaling

to any number of networked computers.

Random 2-dimensional graphs using euclidian distance as the edge metric can be gener-

ated using the tunable topology generator included with GraphSim. This topology generator

is configurable on the parameters of:

1. number of hosts

2. number of domains using network address translation

3. percentage of hosts using network address translation

4. maximum latency between any two hosts

5. out degree for each host

6. if the out degree for a host should be random.

Network address translation (NAT) [8] is simulated through the removal of inbound edges

for all hosts in a domain except for a designated router for that domain. This feature is not

used in this study, but allows for easy extension and future experimentation for networks of

this type.

Multicast Live is the most recent addition to the GraphSim package and allows for point

and click interaction with a graph and shows live visualization as multicast trees are recal-

culated instantly. This software has been created to help others gain a better understanding

of how multicast trees are formed over graphs when out-degree constraints are involved. The

main window for Multicast Live is shown as Figure 4.1 and the application is available as a

Java applet at http://www.graphsim.org/.
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4.2 Metric Space Models

Experiments were conducted over input sets from three different topology models, pro-

viding three different graph models for representing the network. All of the generated

topologies share some common properties in that they are all weighted, undirected, com-

plete graphs. The minimum one-way communication cost between any two end systems

in the network is represented by the distance function d(x, y). Each of the graph mod-

els provides a consistent metric function which obeys the triangle inequality, such that

d(a, b) ≤ d(a, c) + d(c, b) ∀ a, b, c ∈ V where a 6= b 6= c. The three topology models are;

(1) 2-dimensional random geometric, (2) transit-stub using the Georgia Tech Internetwork

Topology Models (GT-ITM) generator [67], and (3) n-dimensional Euclidean hypercube

topologies.

4.2.1 R
2
n

Two dimensional random geometric topologies are generated using the tunable topology gen-

erator that we have created as part of GraphSim. The topology generator is capable of

generating graphs that are embedded in the plane at random locations, and where Euclidian

distance is used as the metric function. Nodes are placed randomly in a circle, at a random

distance and angle from the center of the circle.

4.2.2 GT − ITMn

GT-ITM [67] is used to generate transit-stub networks which simulate sub-domains connected

to each other through an internet backbone. The output graphs from GT-ITM are not

complete graphs, so the missing edges are virtualized by computing the all-pairs shortest

path. This models real Internet communication, as a message from a to b is abstracted to a

single link while the actual message will traverse several links.
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4.2.3 Hp
2n

The third model, n-dimensional hypercube topologies, allows us to examine solutions to the

degree-bounded spanning tree problem in high-dimensional metric spaces. We define the

hypercube metric Hp
2n as follows, each point of the 2n point metric is labeled with a unique

n-bit binary label. The distance between two points of Hp
2n is computed using the `p norm

||x−y||p = (
∑
|xi−yi|p)

1
p . The `1 norm is the ordinary hamming distance which is calculated

as the number of positions that the two point-labels differ in. The `2-norm can simply be

calculated as the square root of the hamming distance. For purposes of notation we refer to

the distance function for hypercube networks as d`p(x, y).

4.3 Metric Spaces

The ability for these metric spaces to have distances that are quickly calculated aids in

the ability to rapidly execute experiments over various random networks. A network where

latencies are always calculated and never stored allows us to experiment on larger networks

due to the smaller memory footprint within the simulator. This form of representation is

used for hypercube topologies.

This allows for simulation to be performed over a complete graph without regard to the

placement of that graph in a network. At the start of the simulation we are assumed to

have all necessary information that would need to be gathered by the mechanism of the

overlay network being utilized, allowing for simulation of entire or segmented networks. We

further assume that this is how implementation would proceed in a deployable solutions,

that multicast routing decisions made at any level in the hierarchy are based on complete

information for that network segment or subsegment.
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4.4 Empirical Study

We have conducted an empirical study aimed at measuring the performance of the Myriad

solution, compared against existing algorithms for networks of different sizes, degree bounds,

and topology models. We use GraphSim, integrated with the tunable topology generator,

which allows for automated, repetitive execution and measurement of graph algorithms on

many different random graphs in a short period of time. GraphSim also includes a module

for loading graphs generated by GT-ITM [67] that have been converted to the included

alternative (“alt”) format. GraphSim is object-oriented and designed to make extensive

use of interfaces, allowing for multiple implementations of the graph data structure. For

experimentation, we use the version of GraphSim capable of running on a high performance

computing (HPC) cluster. Experiments have been conducted using HPC clusters at both

the University of Cincinnati and at Miami University.

Given the base set of algorithms and topologies described in this Chapter, we devised a

suite of repeatable experiments that can run unattended on a cluster and scale to use the

amount of resources available. One large experiment is run for each of the topology models

and is set up as a parameter sweep over the appropriate parameters for that topology.

For random two dimensional topologies we vary the number of nodes and the out-degree

bound. This setup also allows for an additional variable parameter of maximum latency

between any two nodes. During early experimentation we found that varying this parameter

only scaled the results proportionately, thus we have fixed the maximum latency to be 5000

units. Each parameter set is then tested over different random networks. Table 4.1 shows the

actual parameter set used for experiments. In the table, an increment of 1 for the maximum

latency field is required to cause the software to exceed the maximum and then move on to

the next iteration.

Since OMNI does not organize the entire network, but rather a subset of the network
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Parameter Minimum Maximum Increment

Network Size 100 1600 150
Out-degree Bound 3 6 1
Maximum Latency 5000 5000 1
Repetitions 2 to 5

Table 4.1: Parameter set for random two dimensional topology experiments.

refereed to as Multicast Service Nodes (MSNs), results for OMNI must be interpreted with

the knowledge that while MSNs obey out-degree constraints when talking to each other,

those constraints are broken when the MSN starts to serve clients. This is by design in the

OMNI description, and we have accounted for this in the transit-stub topology experiments.

Further discussion on this point is given along with the experimental results, Section 4.5.

Transit-stub networks generated by GT-ITM [67] must be in place before experiments can

be run. A large group of transit-stub networks has been generated and converted to a format

for easy loading into GraphSim. We focused on 600 and 1000 node networks (100 of each) and

tested each network for an out-degree bounds of 3, 4, 5, 6, and 7. The same algorithms are

run on the transit-stub networks, except that OMNI is executed first and allowed to select

the best 128 MSNs out of the starting set. This is done in order to simulate other algorithms

in the real world scenario of deploying owned servers and allowing geographically dispersed

clients to connect to the nearest server. The network is reduced to the MSN set selected by

OMNI, and then the remaining algorithms are used to organize the MSNs. Results for this

category are over the exact same set of nodes and do not violate out-degree constraints in

any way.

Hypercube networks allow for the greatest parameter sweep due to their compact repre-

sentation and relative ease of generation. For these experiments, there are two parameters

to vary: bits for node representation and out-degree bound. The number of bits used to

represent an individual node in the network is used to its fullest extent, and thus 8 bits
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of representation allow for a network of 256 nodes. The OMNI algorithm is not run on

hypercube topologies. Table 4.2 contains the parameter set used for hypercube topology

experiments.

Parameter Minimum Maximum Increment

Representation Bits 8 12 1
Out-degree Bound 3 7 1

Table 4.2: Parameter set for random high dimensional hypercube topology experiments.

The use of 13 bits to represent a node allows for networks of size 8, 192 to be examined.

It is possible to scale to much large networks with additional time and system memory being

the only requirements.

4.5 Experimental Results

Based on the experimental methodology presented in Chapter 4, extensive simulations have

been conducted using GraphSim. The results of these experiments have been collected and

analyzed in order to provide meaningful comparison between Myriad and other algorithms

(KLS [42], MDDBST [60], and OMNI [16]) in the context of different network topologies.

This is done in order to show the utility of Myriad under different initial conditions.

Our analysis and presentation of the experimental results is separated into three sub-

sections grouped by the experimental topologies used. All experiments conducted indicate

superior results for Myriad when compared to other published algorithms as described in

Chapter 4.

4.5.1 Random Topologies

Two dimensional random topologies are generated that have a specified bound on distance,

and that use the Euclidean distance (
√

(x2 − x1)2 + (y2 − y1)2 ) as a metric function. This
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defines a symmetric space where the metric function obeys the triangle inequality. The num-

ber of nodes is kept relatively low since we believe that a hierarchical solution to application

level multicast will prevail, limiting the number of nodes involved in any single multicast

tree calculation, but leaving several parallel tree commutations within any given subscription

group and/or overlay routing network.

While many results have been captured, we examine some specific scenarios. It is also

necessary to make a notation on OMNI. Our implementation of OMNI is a centralized

simulation of the distributed algorithm described by Banerjee et al. [16]. All 5 types of local

transformations and the probabilistic transformations are implemented. Our experiments

utilize a Prand value of 0.1 and a simulated annealing temperature parameter of 10, having

chosen both of these values based on the results presented in [16]. OMNI is not directly

comparable because, by definition, MSNs are assigned a client load that may be above the

degree-bound. The authors of OMNI do not specify if or how client load is scheduled, so we

assume that they are all serviced directly by their MSN. This, however, leaves MSNs above

the degree-bound in some cases since degree-bound is enforced for MSN to MSN connections

and does not seem to be enforced for MSN to client connections. This can have an effect

on the results presented for OMNI as nodes not in the MSN group are simply attached to

their closest MSN. In terms of peer-to-peer networks, OMNI would be considered a hybrid

system rather than purely decentralized overlay network.

There are six different algorithm (or combinations of algorithms) to report on:

1. KLS [42] using breadth-first search based cluster organization

2. KLS with Myriad (compact) for cluster organization

3. Myriad without forcing a compact tree

4. Myriad with a compact tree
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5. MDDBST [60]

6. OMNI [16].

These same six algorithm implementations apply to all experiments for the two dimensional

random and GT-ITM [67] topologies.

550 nodes, Out-degree 3, Random 2D

The experiment for 550 nodes and out-degree 3 has been repeated 4 times, with different

random distributions each time. As a starting point, Table 4.3 shows the average and

standard deviation for the metrics of depth and average-latency. Since the compact version

of Myriad guarantees a compact tree, all calculated trees are of the minimum number of

hops, dlog3(500)e = 6, with depth being the number of hops plus one. The best overall

tree created (in terms over average-latency) is the tree produced by the non-compact version

of Myriad which exhibits not only the lowest average average-latency measurement, but

also the narrowest deviation in the trees produced over 4 different random topologies. The

differences between the average-latency result for the compact and non-compact version of

Myriad illustrate empirically the tradeoff between depth and average-latency when a tree of

minimum of height is desired. Figure 4.2 (Page 64) shows a plot of this same information,

with depth (x-axis) plotted against average-latency (y-axis). The radius of the circles is

relative and scaled to the normalized product of depth and average latency as shown in

table 4.4.

In examining both of the measures of maximum depth and average-latency, experiments

for this network size (n = 550) and out-degree bound (B = 3) demonstrate how both

the compact and non-compact version of Myriad out perform the other algorithms in the

experiment. In examining the average over all experimental runs, using Myriad but not

forcing a compact tree produces the lowest average-latency measurement at 1333.53, with
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Table 4.3: Results for the depth and average-latency measurement, for random 2D networks,
with 550 nodes and out-degree 3. Results are averaged over 4 runs.

Algorithm Max Depth Std. Deviation Average-Latency Std. Deviation

Myriad (Compact) 7.00 0.00 1560.32 97.25
Myriad 8.75 0.96 1333.53 29.47
MDDBST 14.00 2.00 1347.32 39.61
KLS w/ Myriad 9.75 1.26 1584.30 155.75
KLS 8.75 0.96 3079.97 401.97
OMNI 9.75 0.96 1520.05 143.88

Table 4.4: Normalized values for maximum depth, average-latency, and the product of these
two metrics.

Algorithm |Max Depth| |Average-Latency| Product

Myriad (Compact) 0.500 0.507 0.253
Myriad 0.625 0.433 0.271
MDDBST 1.000 0.437 0.437
KLS w/ Myriad 0.696 0.514 0.358
KLS 0.625 1.000 0.625
OMNI 0.696 0.494 0.344

the closest competitor being MDDBST. By the way that MDDBST forms a degree-bounded

spanning tree, there is no attempt to minimize depth in the tree. Even in its non-compact

form Myriad, reduces the height of the tree by promoting subtrees where average-latency

can be improved, yielding a lower maximum depth. These factors combine to produce values

that compete well when considering the normalized values of maximum depth and average-

latency, and the product of these two measures.

1300 nodes, Out-degree 6, Random 2D

The depth-latency tradeoffs are magnified by increasing the number of nodes as well as

the out-degree. For this larger network of 1300 nodes and an out-degree bound of 6, and

two experimental runs Myriad (non-compact) still produces the lowest average-latency at

1297.33. This low average-latency measurement can not be held as the tree is reduced to

a minimum height, and the compact tree product by Myriad averages an average-latency
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of 1707.87. Table 4.5 shows the depth, average-latency measurements, and the standard

deviation of these two metrics. The normalized depth, and average latency appear in Table

4.6 along with the product of these two metrics. Figure 4.3 (Page 65) plots the depth versus

the average-latency, with the radius of each circle defined by the product of the normalized

depth and average-latency values (as shown in Table 4.6).

Myriad exhibits the lowest average-latency measurement and with the least deviation

over the input sets. Without forcing a compact tree, Myriad still produces trees with the

lowest depth measurement when compared to the other algorithms in the study. Consistently,

MDDBST is competitive in the measurement of average-latency, but with trees containing

more levels then necessary, allowing for the possibility of more failure points from the root

to node paths.

Table 4.5: Results for the depth and average-latency measurement, for random 2D networks,
with 1300 nodes and out-degree 6. Results are averaged over 2 runs.

Algorithm Max Depth Std. Deviation Average-Latency Std. Deviation

Myriad (Compact) 5.0 0.00 1707.87 318.08
Myriad 6.5 0.71 1297.33 1.34
MDDBST 14.5 0.71 1325.55 59.23
KLS w/ Myriad 8.0 1.41 1385.25 134.29
KLS 7.0 0.00 2057.03 62.75
OMNI 7.0 0.00 1336.92 121.34

Table 4.6: Normalized values for maximum depth, average-latency, and the product of these
two metrics.

Algorithm |Max Depth| |Average-Latency| Product

Myriad (Compact) 0.345 0.830 0.286
Myriad 0.448 0.631 0.283
MDDBST 1.000 0.644 0.644
KLS w/ Myriad 0.552 0.673 0.372
KLS 0.483 1.000 0.483
OMNI 0.483 0.650 0.314
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Trends in Random 2D

In order to summarize the remaining results for two dimensional random topologies, we

present some trends as observed in the results of the experiments. First, we present some

trends for out-degree 3 experiments for networks of size 100, 250, 400, 550, and 700.

Table 4.7 shows the how the average latency measurements change with the addition of

extra nodes. Average-latency values tend to go down as the network gets larger since the

area becomes more saturated and the length of edges required to span the graph become

shorter.

Table 4.7: Results for the average-latency, averaged over multiple runs (different for each
network size) of each network size, for out-degree 3 and network sizes of 100, 250, 400, 550,
and 700.

Myriad Myriad (Compact) MDDBST OMNI KLS (Myriad) KLS
100 1530.15 1831.86 1589.06 1633.53 1568.85 4126.29
250 1435.68 1724.26 1480.36 1802.31 1426.55 3166.41
400 1374.75 1631.60 1388.41 1559.97 1544.29 3099.96
550 1333.53 1560.32 1347.32 1520.05 1584.30 3079.97
700 1337.55 1718.48 1353.92 1751.00 1570.43 2960.82

In Table 4.8 maximum depth is show for each algorithm using the same experimental

runs as shown in Table 4.7. The compact version of Myriad shows the minimum possible

maximum depth for the network sizes shown. The average-latency and depth are brought

together in Table 4.9, showing the product of normalized depth and normalized average-

latency.

As a visual reference, we provide charts for all three of these tables. Figure 4.4 shows

the average-latency trend for these networks, with a fixed out-degree of 3. In this chart the

Myriad plot line is mostly obscured by the line for MDDBST. In terms of average-latency

only, Myriad delivers results just under what MDDBST provides. The difference in these

algorithms is in the depth of the corresponding trees. Figure 4.5 is a plot of the maximum

depth in the result tree for the same networks.
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Table 4.8: Results for maximum depth, averaged over multiple runs (different for each
network size) of each network size, for out-degree 3 and network sizes of 100, 250, 400, 550,
and 700.

Myriad Myriad (Compact) MDDBST OMNI KLS (Myriad) KLS
100 6.25 5.00 8.15 6.13 6.75 7.65
250 7.83 6.00 11.33 8.17 7.50 8.00
400 8.33 7.00 12.67 8.83 8.67 8.17
550 8.75 7.00 14.00 9.75 9.75 8.75
700 9.50 7.00 13.50 9.75 9.75 9.00

Table 4.9: Results for the product of the normalized maximum depth and average-latency,
averaged over multiple runs of each network size, for out-degree 3 and network sizes of 100,
250, 400, 550, and 700.

Myriad Myriad (Compact) MDDBST OMNI KLS (Myriad) KLS
100 0.285 0.273 0.385 0.298 0.316 0.938
250 0.313 0.288 0.466 0.410 0.298 0.706
400 0.292 0.291 0.448 0.351 0.340 0.644
550 0.271 0.253 0.437 0.344 0.358 0.625
700 0.318 0.301 0.457 0.427 0.383 0.667

To bring everything, together Figure 4.6 is a plot of the product of the normalized

average-latency and normalized maximum depth. This is the same source data as Table 4.9.
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4.5.2 Internetwork Topologies

Experiments for GT-ITM [67] generated transit-stub topologies are conducted over networks

of both 600 and 1000 nodes. Each network size has 100 generated topologies, of which 70

are randomly chooses for the experimental runs. Out-degree constraints are then imposed,

ranging from 3 through 7. Experiments for transit-stub topologies follow the OMNI [16]

model by organizing only a subset of the network, or multicast service nodes (MSNs). We

select MSN nodes by first preferring “transit” nodes in the topology, and then rounding out

the set by selecting “stub” nodes. A total of 128 MSNs are chosen for both network sizes

examined.

600 nodes, Out-degree 3, Transit-Stub

For 600 node internetwork topologies (Table 4.10), Myriad delvers the best average-latency

values in its non-compact form while delivering the best maximum depth for the compact

form. When we consider the dual metric of the product of the normalized depth and the nor-

malized average-latency (Table 4.11), Myraid (both forms) is the best performing algorithm

with MDDBST and OMNI close behind. Figure 4.7 (Page 73) shows a visual plot of the data

from this experiment. The center of a circle is the plot of depth versus average-latency, with

the radius of the circle represented by the product of the normalized depth and normalized

average-latency. In this figure, the plot of the non-compact version of Myriad is partially

obscured by the plot for MDDBST.
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Table 4.10: Results for the depth and average-latency measurement, for GT-ITM transit-
stub networks, with 600 nodes and out-degree 3. Results are averaged over 70 runs.

Algorithm Max Depth Std. Deviation Average-Latency Std. Deviation

Myriad (Compact) 6.00 0.00 279.35 49.35
Myriad 8.27 0.99 212.87 35.73
MDDBST 10.61 1.45 220.76 41.74
KLS w/ Myriad 8.27 1.05 216.23 37.78
KLS 7.67 0.93 630.68 91.11
OMNI 7.17 0.87 253.50 40.97

Table 4.11: Normalized values for maximum depth, average-latency, and the product of these
two metrics. GT-ITM transit-stub topology, 600 nodes, out-degree 3.

Algorithm |Max Depth| |Average-Latency| Product

Myriad (Compact) 0.565 0.443 0.250
Myriad 0.774 0.338 0.261
MDDBST 1.000 0.350 0.350
KLS w/ Myriad 0.779 0.343 0.267
KLS 0.723 1.000 0.723
OMNI 0.676 0.402 0.272
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600 nodes, Out-degree 6, Transit-Stub

Since the ultimate input set of vertices is reduced to 128 MSNs, simply raising the out-degree

bound produces a drop in minimum required depth from 6 to 4. When producing a compact

tree, Myriad is the only algorithm that produces this tree of minimum height. OMNI does

very well in this scenario, with the lowest average-latency value over the input set, but with

an average maximum depth of 5.93.

The full depth and average-latency data for these experiments in presented in Table 4.12.

This table shows that OMNI produces the lowest average-latency value. OMNI does better

as the out-degree bound goes up, but has been found to have scalability limitation in terms

of the number of vertices in the input graph. These results are plotted in Figure 4.8.

Table 4.12: Results for the depth and average-latency measurement, for GT-ITM transit-
stub networks, with 600 nodes and out-degree 6. Results are averaged over 70 runs.

Algorithm Max Depth Std. Deviation Average-Latency Std. Deviation

Myriad (Compact) 4.00 0.00 244.47 58.64
Myriad 6.00 0.82 190.06 42.27
MDDBST 8.77 1.26 201.38 51.49
KLS w/ Myriad 6.00 0.82 190.94 42.30
KLS 5.11 0.94 475.13 68.15
OMNI 5.93 0.75 178.79 30.53

When considering the product of the normalized depth and normalized average-latency

values (Table 4.13, the compact version of Myriad produces the best value. As we have noted

previously, trees of minimum depth are important in reducing the number of failure points

in any root to node path and for networks where a TTL constraint is meaningful.

Over all of the experiments conducted, Myriad has shown to be consistent in producing

out-degree constrained multicast trees that exhibit average-latency measurements at or near

the top (in this case). While OMNI is extremely competitive even for the combined metric

of depth and average-latency in this case, Myriad has been found to scale to larger network

sizes and produce better results for lower out-degree bounds. We believe that on the Internet
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that smaller out-degree bound values will need to be used to power end-system multicast

and that cluster sizes will be somewhat larger than what is examined in this experimental

setup.

Table 4.13: Normalized values for maximum depth, average-latency, and the product of these
two metrics. GT-ITM transit-stub topology, 600 nodes, out-degree 6.

Algorithm |Max Depth| |Average-Latency| Product

Myriad (Compact) 0.456 0.515 0.235
Myriad 0.684 0.400 0.274
MDDBST 1.000 0.424 0.424
KLS w/ Myriad 0.684 0.402 0.275
KLS 0.583 1.000 0.583
OMNI 0.676 0.376 0.254
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4.5.3 Hypercube Typologies

For hypercube topologies, results have been gathered for the parameter combinations of:

8 to 12 bits of representation (256 to 4096 nodes), out-degree bounds of 3 through 7, and

both the `1 and `2 metrics. This produces a total of 50 different network setups, with 5

algorithms run on each network. The algorithms are KLS [42], KLS with Myriad clusters,

Myriad (without compactness), Myriad (with compactness), and MDDBST [60]. OMNI is

not examined for hypercube topologies since initial exploration determined that OMNI did

not lend itself to this type of network topology. A general summary and analysis of the

overall data for hypercube topologies is presented at the end of this section.

We highlight results from the 8 bits (256 node) experiment with out-degree 3, and the

12 bit (4096 node) experiment by examining several factors from this data. Since two both

the `1 and `2 norms are used as distance metrics for the hypercube networks, we present the

results for both metrics. Since the algorithms employed all give the same result when the

same exact input graph is given, all experiments are executed exactly one time.

To facilitate easy comparison, Table 4.14 brings in all of the data for 8 bit hypercube

networks with out-degree 3. This data includes the actual and normalized values for maxi-

mum depth and average-latency, as well as the product of the two normalized measures. In

the `1 metric space, Myriad produces the lowest average-latency measure, while having only

1 level in the tree over optimal. As with the other topologies, the MDDBST algorithm is

competitive in terms of average-latency, but not in terms of maximum depth in the tree

We also highlight a result from a larger hypercube network, using 12 bits of represen-

tation (4096 nodes) and an out-degree bound of 6. Results in this area are similar to the

smaller network with Myriad providing the lowest average-latency measurement and the

lowest product of the normalized maximum depth and average-latency values. The result

for this experiment are shown in Table 4.15.

In summary of all hypercube experiments, we refer to Figures 4.9 and 4.10. This chart,
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respectively, the growth of depth as network sizes increases and the average-latency measure-

ments as network size increases. All experiments captured in these figures are for out-degree

3 trees.
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4.6 Results Summary

Results for all three types of examined topologies (2 dimensional random, transit-stub in-

ternetwork, and high dimensional hypercube), Myriad is among the best performing in all

cases. When considering the hybrid metric of the product of normalized depth and normal-

ized average-latency, Myriad clearly outperforms all other algorithms tested.

The ability of Myriad to deliver the best results across all categories is a measure of how

well Myriad adapts to the network topology given as input. This leads us to believe that

there is the possibility of future adaptation of Myriad for different network topologies such

as wireless sensor networks as well as ad hoc and mobile networks.
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Chapter 5

Analysis for Real-World Systems

In this section we place this research in the context of existing real world systems and

provide forward looking statements on the future for theory related to degree-bound shortest

path / spanning trees and their relation to peer-to-peer overlay networks and the content

dissemination on the Internet.

Of particular interest are existing peer-to-peer overlay networks including the purely

decentralized loosely organized networks (Gnutella [2, 3, 22], Pastry [54], Tulip [11]), and

systems that use intermediate “supernodes” (Kazaa) [14]. We focus on the possibilities of

multicasting in several systems of the next few sections.

5.1 Multicasting and Peer-to-peer

Multicast routing involves determining how to send a source message (we can generalize to

the single TCP1/IP packet or UDP2/IP level without loss of generality) from a host r to a

subset of the hosts u ∈ V where the hosts in the set u are defined by a logical group iden-

tifier. Broadcasting is the upper-bound case of multicasting where the message destination

1Transmission Control Protocol
2User Datagram Protocol
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is the entire network (u = V ) so we will refer to both scenarios as multicasting where the

size of the multicast group u satisfies 1 ≤ |u| ≤ |V |. A distinction must be made between

between network supported multicast and application-level (or software multicasting). Mul-

ticasting can be useful whenever there is a large group of users who want access to the same

information, and can possibly alleviate the effect of flash crowds [55].

Network level support for IP multicasting has been described in RFC 1112 [7] and the

Internet Group Management Protocol (IGMP - RFC 3376) [9]. With network layer multi-

casting hosts are able to inform their local routers of their desire to join a multicast group,

via IGMP. At the router level, messages are duplicated and delivered to all subscribing hosts

[43]. This allows for a close to optimal (minimum) number of messages in order to deliver the

message and avoids multiplexing (reducing traffic). Network level (IP) multicasting has not

been widely adopted [32], so we will consider software solutions that implement multicasting

using only unicast messages.

Chu et al. [24] set forth important arguments for implementing multicast in end systems,

rather than at the IP layer. They provide four major drawbacks to network layer multicast:

1. Maintaining group memberships introduces state into a currently stateless system.

2. Greatly complicates network management since IP unicast is already loosely defined

and does not always take the optimal route.

3. Concerns with the scalability and efficiency for distributing and managing internet-

wide unique group identifiers.

4. The changes required to infrastructure (routers) increases cost and delays implemen-

tation.

Given those constraints, application-level multicast is not entirely without faults. In partic-

ular, application-level multicast can not ensure that a single physical link is not traversed
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twice, and is thus sub-optimal for latency and bandwidth saturation. When building an

application-level multicast solution, we must consider and measure the performance impact

of constructing the multicast routes in an overlay network that does not have global knowl-

edge [24].

Multicasting is a valuable tool and is a well studied problem at the network level and at

the application level [17, 20, 23, 45, 59] for distribution of all sorts of applications. Poten-

tial multicast applications include multimedia distribution [58, 61, 63, 65] and news/event

notification [57], as well as many other applications [1, 23, 37].

In examining application level multicast networks, we consider the possibilities for de-

livery of such services. Peer-to-peer (P2P) systems cover a range of distributed systems

using the fringes of the Internet. These systems vary in their organization from the purely

distributed (Gnutella [2], Pastry [54], Tulip [11], Chord [62]), systems that user intermedi-

ate “supernodes” (Kazaa), and even extends to systems with a centralized server (original

Napster) [14].

P2P overlay networks provide a logical alternative routing structure than what is used

for all internet traffic, creating a virtual network that overlays the physical network. P2P

overlay networks are a natural fit for application-level multicast routing since protocols

already exist for the construction of general routing tables and for the actual routing of

individual messages. So we must find new ways to leverage the infrastructure of the P2P

network in order to provide efficient multicast delivery. In this Chapter, case studies are

presented on how existing P2P overlay networks can be equipped with (or gain improved)

multicast functionality through application of the work presented here.
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5.2 Multicasting in Unstructured Peer-to-peer

Gnutella [2] is a totally decentralized peer-to-peer overlay network [14] that performs all

of its maintenance and query operations via broadcasting [3]. A peer joins the network by

contacting a known member and broadcasting a PING message to all of its directly connected

nodes, who in turn broadcast the message to their connected nodes. Queries are also sent in

this manner, broadcasting a query to each of a node’s neighbors who then broadcast to their

neighbors. Responses are then sent back to the host (allowing for it to traverse the same

route in reverse, plus up to two additional hops). Each message is given a time to live (TTL)

which is (usually) set to seven hops. This allows any given node to reach a subset of nodes

in the network, but is truly based on who you know. This construct amounts to flooding for

nearly all communication that deals with network setup and searching (file transfers are done

directly between clients via HTTP), but provides no visible structure that can be exploited

for routing purposes.

The earliest version of the Gnutella protocol defined all peers to be truly that, equals

in the system regardless of resources available (link speed). Current versions of Gnutella

protocol (version 0.6 [3]) employ an “ultrapeer” scheme, effectively implementing a star

topology. The elected ultrapeers are connected to each other in the same manner as earlier

versions of Gnutella, and other nodes (called leaves) are connected to the ultrapeers. In this

manner, ultrapeers act as a proxy to the entire network for their leaf set. This is beginning

to introduce structure into the traditionally unstructured Gnutella overlay network.

It seems that a guaranteed multicast is not immediately possible in the Gnutella network

without adding an even more rigorous structure to the network and it has been shown

that introducing structure to Gnutella greatly reduces the number of messages required

[22]. Based on the current direction of the Gnutella protocol specification, we will make

the assumption that each ultrapeer represents 75 leaf nodes and has connections to 6 other
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ultrapeers in the Gnutella network [3, 5]. Based on a strict interpretation of the Gnutella

protocol with ultrapeers enabled, a given peer, in the best case, can reach a maximum of

3,499,199 other peers. This is a best case scenario and assumes that all ultrapeers know

distinctly different ultrapeers (i.e. network can be represented with a directed acyclic graph

- DAG), and is not likely to be reality. Given this data, we conjecture that there is not

an effective solution for building a reliable multicast structure for Gnutella, however it is

possible to build one for closely connected localities. This simply allows for the possibility

that some users might not be able to reach the multicast group.

In order to implement multicast in Gnutella, the ultrapeers concept is essential. We will

prescribe the additional responsibility of managing multicast groups to ultrapeers. Each

ultrapeer will manage multicast groups created by its leaf nodes, providing an even distribu-

tion given the assumption that leaf nodes are evenly distributed among ultrapeers and that

every leaf node is equally likely create multicast groups, thus providing a well distributed

load for hosting the multicast groups. Thus, creation of multicast groups is a one hop oper-

ation assigning the group to a given node’s ultrapeer (or itself if the originating node is an

ultrapeer).

If any other node in the network (leaf or ultrapeer) wishes to join the multicast group,

that peer sends a join request to its connecting ultrapeer who then floods the network in the

same manner as content query requests are processed today. Therefore, if a node’s ultrapeer

is within six or seven hops of the ultrapeer hosting the multicasts group, the join should

be successful. If a join message reaches the multicast groups originating ultrapeer, that

ultrapeer responds with a hit response. The multicast group owning ultrapeer keeps track

of the joining peer’s representative ultrapeer’s IP address and port number, and the joining

node’s ultrapeer must keep track of the fact that the joining node has joined the group. In

addition, the joining ultrapeer will remember which node responded with the hit message

for direct routing the in the future.
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To send a message to a given multicast group, a peer begins by sending a message to

its ultrapeer. If the sending peer is know by its ultrapeer to be a member of the multicast

group, the send request is forwarded (directly) to the ultrapeer that owns the multicast group.

The group owning ultrapeer then forwards the multicast message content to its connected

ultrapeers (only if it knows that they represent subscribers), who in turn do the same (with

the given TTL). In this scenario, it is possible that the multicast message is routed through

ultrapeers that do not represent subscribers, but does not route along eventually dead edges.

There is also not a guarantee that a given ultrapeer will not receive any given packet twice,

but should discard duplicates as with other Gnutella messages.

The multicast system proposed here as an addition to the Gnutella partially satisfies the

base criteria for peer-to-peer multicast networks. Any given multicast group will be allowed

to live beyond its originator, but not beyond its originator’s ultrapeer. This is because

Gnutella does not provide semantics for maintaining content beyond the existence of it’s

owner, and we have preserved that. Scalability seems to be reasonable in this network as

it builds upon the existing Gnutella query flooding process, but does slightly reduce the

number of overall messages by taking advantage of the existing of ultrapeers and having

them record routes as they are created. For now, we presume that the existing Gnutella

network can handle this additional load for certain multicast traffic (stock tickers, chat,

and sports scores) but does not seem to offer the efficiencies and bandwidth that would be

required (additional experimentation and measurement would be required to fully describe

the requirements). Efficiencies are clearly gained when membership is concentrated on a

small subset of the ultrapeers that are fewer hops from the message source, and in a worst

case scenario a multicast group with one sender and on subscriber could require seven hops to

deliver the payload, routing through five ultrapeers who are simply relaying the message and

not processing anything. In the situation of Gnutella, Myriad could be used for scheduling

between the ultrapeers and also for a subnetwork of subscribers that is served by an ultrapeer.
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5.3 Multicasting in Structured Peer-to-peer

Structured peer-to-peer networks present a friendlier framework within which we may design

application-level multicast protocols. We will concentrate on various networks that imple-

ment distributed hash table (DHT) semantics: CAN [51], Chord [62], Pastry [54], and Tulip

[11]. Each of these networks builds an overlay network in a different way and we examine how

each might provide some usefulness towards designing a multicast protocol for the network.

Since each of these networks provides key based content publishing and lookup, we can

assume that a special multicast object will be able to be stored in the system using the

well known consistent hash function for that particular network. This allows for consistent

storage and ownership of the keys, as well as possible migration of the key when a node

leaves the network. Specific qualities of each network will be addressed individually.

5.3.1 Multicasting in CAN

The content-addressable network (CAN) described by Ratnasamy et al. [51] in it’s purest

form divides a two dimensional space (represented by [0, 1]× [0, 1]) by splitting the heaviest

loaded area (in terms of managed content) in half when a new node joins. Thus when the

network is being bootstrapped, the first node owns the entire space and when a second node

joins they each represent half of the space. Items are located in the network by hashing the

object to a unique coordinate and making the node whose area the point falls in responsible

for that object. Routing is then done by relaying messages from a given node to that nodes

immediate neighbors only. The initial design of CAN assigned the nodes space in the order

they arrived, but attempts have been made to make the representative space more accurately

reflect the distance between nodes as determined by round trip times (RTT) between the

nodes, thus providing some degree of locality awareness. The average routing path in a CAN

network is of length d
4
n

1
d there n is the number of nodes in the network (equal partitions)
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and d is the dimensionality of the space [51]. If we reduce to a strictly two dimensional

network, the average routing path becomes
√

n
2

.

While CAN provides the necessary functionality of being able to label and consistently

address multicast groups, the ability to efficiently route multicast messages is not inherent to

the network. We can propose a system for CAN by where a node subscribing to a multicast

group will leave that information with every node along the path from the joiner to the

node owning the multicast group. This will allow the reverse route to be traversed when

delivering the multicast message. Any receiving a request duplicates the packet sends it to all

it’s subscribing neighbors. This organization should minimize the number of physical links

that cary the same multicast packet (assuming nodes enter the network using the locality

awareness). The chosen value for d affects how quickly a given multicast message traverses

the network. Higher dimensionality (higher values for d) all a message to be duplicated

more times, thus potentially reaching more subscribers in less hops. For example when

d = 1 any node receiving the message can only forward to at most 1 additional node, for

d = 2 the message can be duplicated 3 times, and for d = 3 the message can be duplicated

up to 5 times. This choice for the parameter d will determine the effectiveness of multicast

message delivery in CAN. CAN lends itself to reverse path forwarding solutions and does

not seem to easily adaptable to the inclusion of an algorithm such as Myriad for multicast

route calculation.

5.3.2 Multicasting in Chord and Pastry

Chord [62] provides the standard DHT service of keyed lookup, but organizes the logical

layout of nodes differently than CAN. In a Chord network, nodes are organized in a 1

dimensional space (a line from 0 to x with wrap around - usually drawn as a circle). Again,

because of the DHT semantics, labeling and assigning ownership to a multicast group is

trivial as long as we utilize to a well known consistent hash function for the labeling.
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Since Pastry [54] is closely related to Chord, we will consider the Scribe [20] application-

level multicasting infrastructure already built for Pastry. Scribe does well in respect to route

maintenance link stress but falls short in the efficient delivery of multicast messages. Scribe

functions by reversing the path of normal Pastry traffic and forms trees by taking the union

of these paths and reversing them at the join points (a technique known as reverse path

forwarding). The problem is that locality is not taken into consideration and two computers

sitting next to each other might relay a message through a third host that is much farther

away. The lower dimensionality and loss of locality inhibits efficient scheduling of multicast

routes on Chord and Pastry.

Reverse path forwarding has some ill effects including the inability to guarantee an out-

degree bound at any particular node in the overlay network. Borg is hybrid multicast dis-

tribution scheme [68] that is also built upon Pastry and alleviates some of the impact when

using reverse-path forwarding. As with Scribe, Borg can not guarantee that out-degree

constrains are satisfied. This further complicates the distribution of real-time multimedia

streaming content with a high bandwidth and low latency requirements. So we consider the

possibility of implementing the Myriad algorithm for a unit circle DHT such as Pastry.

In order to execute Myriad more information about the network is needed than what is

normally provided in a Pastry routing table. The obvious solution is to simply increase the

routing table information required, which would cause routing table to become to large to

manage for a sufficiently large network. Instead we consider a hybrid approach allowing the

network to be segmented into an artificial hierarchy. This hierarchical approach will allow

for full routing information to be exchanged between subsets of nodes in the network, rather

than all members of the network.

For Pastry, it is possible to implement Myriad by expanding either the routing table or

the neighborhood set. In order to guarantee multicasting ability, any node in the network has

to be able to initiate a multicast stream that can reach the rest of the network. We therefore
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propose a hierarchy that is based on the node ID structure. While it might be better for

overall latency to leverage the locality properties of the neighborhood set, it becomes difficult

to build a reliable hierarchical structure that guarantees inclusion of all participants.

Therefore we propose segmentation of the network upon logical node ID strings. Each

participant in the pastry network would be required to maintain routing information about

some fraction of the node ID ring from their ID forward. This allows for the calculation of

multicast routes using locality information within a segment of the node ID circle. Meta-

scheduling would need to be done to ensure that each segment of the circle is covered, using

standard Pastry routing.

The only remaining item to allow for Myriad based scheduling is the determining of which

nodes in any given segment wish to participate or have subscribed to a selected multicast

group. This is additional information that would need to be brought into the routing table

and exchanged on refreshes. It would be possible to use the same techniques as discussed in

the next section.

5.3.3 Multicasting in Tulip

The Tulip peer-to-peer overlay network described in [11] introduces a well described and

mathematically sound overlay network that formally provides stretch-2 routing, and maxi-

mum of 2 network hops for routing [10, 11].

Stretch-2 routing has a maximum ratio of 2 for cost the routing path from source to

destination as compared to the minimum (optimal) routing path. Tulip achieves the ability

to do 2 hop routing by maintaining a high out degree of O(2
√

n log n), where n is the number

of nodes in the network. Here, out degree represents information that is kept current in any

given participant’s routing table. This high redundancy allows for routing around failures

with minimal overhead, at the expense of higher memory usage at each peer, but still within

an acceptable range for memory consumption.
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There is a subset of the formal foundations of Tulip whose definitions are useful when

constructing the multicast portion of the overlay. The most important of which is the distance

function d(r, t) that represents the communication cost from source node r to the destination

node t. The vicinity of any given node u ∈ V is defined as the
√

n log n closest nodes

according to d() [11]. It is necessary to measure round trip times and estimate bandwidth

to avoid the problem of users misrepresenting their bandwidth to discourage other hosts to

download from them [38].

In Tulip, every node is assigned a label that is the result of a consistent hash function.

The first log
√

n bits of the hash are taken to be the color of the node, this is the color

function c(u). Because of relatively even distribution of the SHA-1 hash function, this leads

to
√

n color sets with at most 2
√

n nodes in each color set [11]. Every node maintains

2 sets of information; (1) the vicinity list consists of the closest log n nodes of each color

and (2) the color list, consisting of information about ever other node of the same color

c(u) = c(x) | ∀x ∈ V .

Tulip’s keyed lookup routing is for objects whose exact key is known, which is the case

for multicast groups since their identifier (or group name) is known. Each object is stored by

assigning it a color (through the same method as coloring peer nodes) and locating it on the

host of the same color with the longest matching label prefix (similar to the key assignment

in Pastry [54]). Locating the stored object can be done in one or two hops, depending on

the color of the object and the color of the requesting node. The first hop will go directly to

the object (if the object is the same color as the requesting object), otherwise the requesting

node will route the request to the closest node (according to the prefix of their hashes) that

is the same color as the object (the normal Tulip routing scheme). The second routing hop

goes directly to the node holding the object since the holder will be the same color as the

receiver of the first routing hop and all nodes of the same color maintain information about

each other.
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In order to provide multicasting that uses Myriad to calculate routes, Tulip needs to be

modified so that multicast is natively supported without additional support at the application

level. In addition to the normal routing information kept at each host, nodes must maintain

certain data to keep track of multicast routes. Each node begins by maintaining its own

subscription list which consists of a version number and 1024 bytes of subscription data.

The subscription data portion is a representation of a counting Bloom filter (where the

multicast group IDs are mapped into the filter). By using a Bloom filter, we are accepting

the possibility that a false positive might be reported when testing for membership in a

multicast group. When the subscription information is shared, an alternative representation

(using non-counting Bloom Filter) is used, this allows the same subscription data for a single

node to be stored in 128 bytes (and is read-only). The power of nodes in the network would

affect their ability to use either the counting filter or non-counting filter.

During the color list refresh [11], each node sends accompanying multicast subscription

version number that is known for each node. If the node receiving the data sees a newer

version for a given node, it will request the subscription data for that specific node. This

will put initial stress of a node joining the network, but provides a much greater benefit for

the network as a whole since the subscription data for all nodes is not sent on every refresh

request. Nodes that enter a steady state as far as their subscriptions go, will see almost

no additional overhead during the color list refresh. This mechanism also helps to prevent

nodes from creating a fake multicast subscription filter for other nodes by always retrieving

the correct copy of the data from the owning host.

An additional data structure is also passed around the network for each host in the color

group. This consists of a version number and a vector for a given node contains scaled

(0-255) latency values from that node to all other nodes of the same color, thus the length

of the vector is 2
√

n and is broken up into individual elements and passed along with the

known routing information for that node. The overhead introduced by this is (2
√

n)2 in
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terms of communication costs. This allows any given node in a color group to calculate the

all pairs shortest paths and schedule the color group multicast tree.

After
√

n color list refreshes, any given node will have all of the data necessary needed

to schedule any given multicast route (local to that node’s color group). Before the data

has reached a steady state, messages can still be routed, but the tree may need to be rebuilt

later. As a node disappears from the network its multicast routing information disappears

along with it’s standard routing information, no special communication is needed for this.

The source node is the orchestrator of the first level of scheduling (where the source node

is the node which stores the identify of the group - not the actual sender of the message).

This source node will seed the message into each color group where internal color group

scheduling will take place.

Since color groups are used as the primary network segmentation device, the hierarchy

imposed is 2 level. Requiring the source node to physically disseminate the message into

each color group could be costly, so Myriad would need to be run over a set contains the

source node and one representative from each color group. Each source node will maintain

multicast routing information through the first node of each color in it’s vicinity list.

Once the message has been seeded into each color group, these network segments can be

scheduled. Since subscription information is shared among members of a color group, any

node receiving a multicast communication from outside the color group has the authority

and information to use Myriad to construct a multicast delivery tree for the color group.

5.4 Summary

While this work has provided a new algorithm for the construction of minimum average-

latency degree-bounded directed spanning trees, it is important to assess the potential impact

on real-world systems. Since the algorithmic solution for Myriad has been reduced to a graph
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problem, it should be possible to use the algorithm to schedule multicast communications on

any peer-to-peer overlay network where the necessary routing information is either available

or can be made available to the application.
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Chapter 6

Conclusion

In this body of research we have examined the problem of multicast based group com-

munication through algorithm development in relation to the degree-constrained minimum

average-latency spanning tree problem (DC-MAL as defined in Section 1.1). This, and con-

tinued research on this problem is warranted because of the large body of existing and future

multicast applications [1, 24, 26, 40, 49, 58, 61, 64]. We believe that the research in this area

will continue to grow, giving way to practical systems that are used seamlessly alongside

existing Internet applications.

Since IP multicast is facing slow adoption, the consensus of the community seems to

point to application level multicasting as an enabling technology [18, 20, 23, 24, 45, 50].

Our research is positioned in response to this trend of delivering multicast content through

peer-to-peer overlay networks and aims to make use existing (or expanded) routing infor-

mation available at end systems participating in the peer-to-peer overlay network. This

extended routing information and accompanying locality calculations can be used to feed

into a centralized algorithm such as Myriad, which is presented here.

When organizing nodes in a network with full routing information, it is possible to gen-

eralize to a graph structure. This allows study of DC-MAL in relation to multicast com-
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munication. The constraint of minimum average-latency is motivated by the desire to reach

all subscribers in the minimum amount of time possible. Out-degree (degree-bounded) con-

straints are imposed by the physical capabilities of the network in relation to the bandwidth

requirements of the multicast communication stream. Our work has also shown the impact

of requiring a compact tree to be formed for the multicast routes [41]. Reducing the average

number of hops required to reach all subscribes in turn reduces the potential points of failure

along the communication paths.

Myriad provides an approximate solution to DC-MAL by adhering to heuristic con-

straints developed through extensive experimentation and visualization of new and existing

algorithms. Myriad operates on the property that any node in a multicast tree should con-

nect to the root through a parent node that is closer to the root than itself. If a compact

tree is desired, this algorithm performs well for uniformly random network distributions. For

non-compact trees, Myriad consistently outperforms other algorithms in the area (Section

4.5).

We believe that this research can serve as the foundation for future research in the area

of application level multicasting. A first step is to move Myriad out of the simulator and

deploy the technology as a real world multicast system positioned for delivery of (near) real

time multimedia content. Content with high bandwidth requirements will naturally yield

low out-degree constraints at end systems and extends well from the experiments conducted

in the examination of Myriad.

The use of application level multicasting can also allow for participation in multicast

communication by end systems that are obstructed from public internet communication

by network address translation (NAT) [8], an item that has been somewhat ignored [66].

Additional research is needed to construct systems capable of originating and delivering

multicast communication involving hosts behind a network address translator. We believe
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that Myriad is a candidate algorithm for the organization of multicast overlay networks

positioned in this space.

Our plans for future work on Myriad include exploring methods for constructing a dis-

tributed version of the algorithm. Initial work on this problem indicates that we might be

able to employ the same heuristic, of only connecting through vertices that are closer to the

root, in a distributed manner. In this model, each vertex would be responsible for picking its

own parent out of its neighbor set, using coordinate approximation to select a parent that

is closer to the root than itself. In order to handle the dynamism and churn of a running

system, we consider an incentive system, providing a vertex with better placement in the tree

if they agree to host children in the same multicast stream. Given the results for centralized

experimentation with Myriad, we believe that a distributed algorithm formulated in a similar

fashion can provide competitive results for solving DC-MAL and powering application-level

multicasting on the Internet.

By introducing the new Myriad algorithm and investigating the problem of multicasting

and the related minimum average-latency degree-bounded directed spanning tree problem we

have contributed to the field and advanced a position and framework within to undertake

future research on this subject. A common vocabulary for comparing and classifying multi-

cast tree has been proposed (Section 1.2) in order to fill an apparent gap in the discourse on

multicast and degree-bounded spanning trees. This work also demonstrates through empiri-

cal evaluation the performance improvements when comparing Myriad to other competitive

algorithms aimed at solving the same or closely related problems. Lastly we show experi-

mental results that indicate a depth-latency tradeoff when constructing multicast trees [41]

and believe that this insight will aid in future development and advancement in graph theory

and multicasting technologies.
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