
198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 2, FEBRUARY 1997

Generating De Bruijn Sequences:
An Efficient Implementation

F.S. Annexstein

Abstract —This paper presents a concise and efficient implementation
of a method of producing De Bruijn sequences. The implementation is
based on a recursive method due to Lempel [5]. We provide code for a
function that for each pair of integers n ≥ 2 and 0 £ x < 2

n−2 returns a
unique De Bruijn sequence of order-n. The implementation requires
only O(2

n
) bit operations

Index Terms —Shift register sequences, De Bruijn graphs,
computational complexity, recursive algorithms, NESL programming
language.

———————— ✦ ————————

1 INTRODUCTION

THE use of shift registers to produce sequences of zeros and ones
with various randomness properties is well established (see, e.g.,
[1], [4]). In this paper, our concern is the generation of long shift
register sequences, known as full cycles or De Bruijn sequences.
An order-n De Bruijn sequence is a sequence of 2n bits, which when
arranged on a circle contains, as subsequences of consecutive bits,
every n-bit sequence. Finding a De Bruijn sequence is equivalent to
the problem of finding a Hamiltonian (directed) cycle in a shift-
register graph, called a De Bruijn graph. A variety of algorithms for
finding such sequences can be found in the survey papers of Fre-
drickson [3] and Ralston [6]. All the algorithms presented therein
apparently require W(n2n) bit operations (bit-ops) to generate an
order-n De Bruijn sequence.

In this paper, we provide a particularly concise and efficient
implementation for generating De Bruijn sequences. The imple-
mentation is based on a recursive method due to Lempel [5]. We
provide code for a function Generate-DeBruijn(n, x) which takes an
integer n, and returns a order-n De Bruijn sequence; a length n−2
bitstring x specifies a unique one out of a possible 2n−2 sequences
to return. Our implementation requires only O(2n) bit-ops,
whereas a naive implementation would require W(n2n) bit-ops. In
addition, our implementation enjoys extremely good locality of
reference. Since nearly all memory references come from scanning
arrays. For expository purposes, we provide working code for our
implementation using the programming language NESL [2], an
applicative language with transparent semantics. NESL’s advan-
tage is that it provides high-level scanning primitives, and also
provides a simple mechanism for calculating complexity on vari-
ous serial and parallel machine models. From the code it is readily
apparent that a parallel implementation is also quite efficient: only
n parallel steps are required to generate an order-n sequence. The
NESL code we provide can be easily translated into C-code
(available from the author). Using the C language implementation
we can generate a De Bruijn sequence of size 220 in under five sec-
onds (wall clock time) on a Sparcstation IPC.

2 PRELIMINARIES

2.1 The De Bruijn Graph

The 2n-node De Bruijn graph 'n is the digraph whose node-set is

Bn, the set of all n-bit strings. Given a pair of strings x, y Œ Bn, we

write x Æ y if there is an arc in 'n from x to y. The arcs of 'n are

defined as follows: for a Œ {0, 1} and w Œ Bn−1, we have a w Æ w a
and aw waÆ , where a a= -1 . We use the following notation to

denote certain string types: Let a denote the string of all zeros, let

a denote the string of all ones, and let b and b denote the unique
pair of “alternating-strings” (i.e., the strings 10101... and 01010...).
When referring to such strings, their lengths shall be clear from

context. Note that in each graph 'n we have b bÆ and b bÆ .
A pair of strings x, y Œ Bn are conjugate if they differ only in the

first (leftmost) bit coordinate. A pair of cycles C1, C2 are adjacent in
'n if they are disjoint and there is a conjugate pair x x, $ such that
x Œ C1 and $x CŒ 2 . It is easy to show that a pair of adjacent cycles
are merged into a single cycle when the successors of an associated
conjugate pair are interchanged.

A cycle of length k, or a k-cycle, is a sequence of k distinct strings
x0, x1, º xk−1 where xi Æ x(i+1)mod k, for each 0 £ i < k. It is convenient
to represent a k-cycle by its bit representation: a sequence of k bits
[b1 b2 � bk] where each bi is the rightmost bit of the string xi mod k.
With this representation it is natural to view a k-cycle as beginning,
or oriented, at the node x0 = bk−n+1 � bk. The cycle is (re)constructed by
traveling along the edges defined by each successive bit, that is,
starting out at x0 and traveling across the b1 arc brings us to x1, then
across the b2 arc brings us to x2, and so forth, until the cycle is com-
pleted by traveling across the bk arc which brings us back to x0. Note
that the string associated with each node on a k-cycle is contained as
a substring of the bit representation [b1 b2 � bk] viewed as a circular
list. Given an oriented k-cycle C containing string g, let |g|C (0 £ |g|C

£ k − 1) denote the number of arcs required to reach g from the be-
ginning of the cycle. Equivalently, |g|C is the index (mod k) of the
terminating (rightmost) bit of string g in the bit representation of the
k-cycle defined by C.

2.2 Lempel’s Homomorphism

Consider the set of n-bit strings Bn, and let the mapping D : Bn Æ

Bn−1 be defined by D(a1, º, an) = (a1 + a2), (a2 + a3), º, (an−1 + an),
where addition is modulo 2. It is easily verified that D is a two-to-

one onto mapping that induces a graph homomorphism 'n Æ

'n−1 [5]. Each arc in 'n−1 (with the exception of the two self-loops)

is the image under D of a pair of node disjoint arcs in 'n. Hence,

by induction it follows that any path in 'n−1 is the image under D
of a pair of node disjoint paths. Lempel [5] showed that if the

number of ones in a k-cycle [b1 º bk] of 'n−1 is even, then the k-

cycle is the image under D of a pair of node disjoint k-cycles in 'n.

It is easy to verify that the number of ones in a full 2n-cycle in 'n is

2n−1. Hence, for all n > 1 the pre-image under D of a full cycle

F a a a n= []1 2 2
K (oriented at a) in 'n is a pair of disjoint cycles C,

C of 'n+1. By applying the inverse of the mapping D, we find that

we can represent these cycles as follows: C = [b1b2 � bk] and

C b b bk= []1 2 K where for each 1 £ i £ 2n, bi = (a1 + a2 + � + ai) mod 2.
The reader may easily verify that applying the mapping D to each

0018-9340/97$10.00 ©1997 IEEE

————————————————

• The author is with the Department of Electrical and Computer Engineering
and Computer Science, University of Cincinnati, Cincinnati, OH 45221.

 E-mail: fred.annexstein@uc.edu.

Manuscript received December 1994; revised May 1995.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96281.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 2, FEBRUARY 1997 199

of the nodes in the cycle C (or cycle C) produces the cycle F (see
also Theorem 5 in [5]). We will assume, without loss of generality,

that C is oriented at a and C is oriented at a .
We now describe an inductive construction whereby we join the

pair C, C of cycles of 'n+1 into a single full cycle. Let b denote the
alternating-string that belongs to the cycle C. It follows that the com-
plementary string b belongs to C since their images under D are

identical, i.e., D D() ()b b a= = . Since b bÆ and b bÆ , it follows

that the conjugate $b of b is the predecessor of b in C , and the con-

jugate $b of b is the predecessor of b in C. Hence, the cycles C and
C are adjacent, and thus by interchanging the successors of either
one of these pair of conjugates we obtain a full cycle. Interchanging

the successors of b and $b is called a type-0 interchange, and inter-

changing the successors of b and $b is called a type-1 interchange.
These two types of constructions are pictured in Fig. 1.

Fig. 1. Joining cycles to form a De Bruijn sequence. The top figure

represents the pair of adjacent cycles C C, that are the pre-image of
some full cycle. The middle figure represents the joining of these cy-
cles via a type-0 interchange, and the bottom via a type-1 interchange.

To maximize efficiency, when generating sequences induc-

tively, it will be important to compute |b|
w

, the index of the al-

ternating-string in each full cycle w, so that we have a handle on
where to join the pair of cycles needed to obtain the next induc-
tively defined sequence. Recall that D D() ()b b a= = , hence, we

can use knowledge of a to inductively compute |b|, as illus-
trated by the following proposition.

PROPOSITION 1. Let w be any order-n De Bruijn sequence oriented at a,
where n ≥ 2. Let C, C denote the pair of adjacent cycles that are
the pre-image of w under D. Let w0 and w1 denote the order-(n + 1)
De Bruijn sequences obtained via the type-0 and type-1 inter-
changes on the cycles C, C , respectively. Then the following four
identities hold.

1) b b aw w0 = =
C

2) b b aw w1 2 2= + = +
C

n n

3) a w 0 2 1= +n

4) a w 1 2 1= -n

PROOF. Since a b= D() , it is clear that a w the path-length from a

to a in w is equal to |b|C the path-length from a to b in C.

Since the construction of w0 leaves the path in C from a to b
intact, it follows that b b wC

= 0 , and the first identity holds.

The construction of w1 leaves the first |b|C − 1 arcs in the

path in C from a to the predecessor of b intact. Then the w1

path hops to and traverses the entire cycle C (an additional

2n arcs). Then the path hops back, thus returning to b Œ C.

Hence, b w 1 the length of path from a to b in w1 is precisely

|b|C + 2n, and the second identity holds.

Recall that the number of arcs traversed in the cycle C
when traveling from a to b plus the number of arcs trav-
ersed when traveling from b back to a is precisely 2n. Of
course, this latter summand is the same as the number of
arcs traversed when traveling from b to a in the cycle C .
The arcs traversed when traveling from a to a in the cycle
defined by w0 is precisely the arcs in C from a to b, followed
by a hop over to b Œ C , followed by the arcs traversed
when traveling from b to a in C . Hence, the total number
of arcs traversed is 2n + 1, and the third identity holds.

The fourth identity follows from an argument similar to
that for the third. �

3 THE IMPLEMENTATION

The following function, Next-DeBruijn, takes as input three pa-
rameters w,i,k, where w is a De Bruijn sequence given by its bit

representation (oriented at a), an integer i is required to be a
w

the path-length in w from the origin a to a , and a single bit k
specifies the type of interchange to be performed (k = 0 specifies a
type-0 and k = 1 specifies a type-1 interchange). The output of the
function is a De Bruijn sequence of the next higher order. We use
the NESL language to express the function since the language pro-
vides a number of built-in functions that compute scans or parallel
prefix operations on a sequence. We use a function xor_iscan
that returns a sequence that is the (inclusive) parallel prefix using

the xor operator, i.e., if x = x1x2 º xn is an n-bit string, then

xor_iscan(x) = y = y1y2 º yn, where for each i we have that yi = x1

xor x2 xor � xor xi.

function Next-Next-DeBruijn(w, i, k) =
let

C = xor_iscan(w); – – apply (inclusive)
prefix scan

Cbar = {1 - a : a in C}; – – compute the bit-
complement of the sequence

part1 = take (C, i - k); – – take the first i - k
bits from C

part2 = drop (Cbar, i - 1 + k); – – drop the first
i - 1 + k bits from Cbar

part3 = take (Cbar, i - 1 + k); – – take the first
i - 1 + k bits from Cbar

part4 = drop (C, i - k); – – drop the first i - k
bits from C

in part1 ++ part2 ++ part3 ++ part4– – concatenate
the list for output

PROOF OF CORRECTNESS. The fact that cycle C is defined by the bit
sequence C = xor_iscan(w) follows from the inversion of
Lempel’s homomorphism (as described above) and the fact
that we have oriented the cycle at a. The fact that cycle C is
defined by Cbar = {1 - a : a in C}, the bit comple-
ment of C, follows similarly.

We consider the case where k = 0, i.e., the construction
using the type-0 interchange. The correctness of the case
where k = 1 follows from a similar argument. Recall that
the inductive construction makes use of four subpaths de-
fined by dividing the inductively defined cycles C and C
into two pieces each. For the type-0 interchange, the first
piece of the full cycle is the portion of C that defines a path

200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 2, FEBRUARY 1997

from a to b. We know from Proposition 1 that b
w0

 the path-

length from a to b is i
w

= a . Hence, by taking part1 as the

first i bits from C we isolate the subpath of C from a to b.
The second subpath we need is the path in C from b to a .
Note that appending the ith bit of Cbar to part1 will bring
the path to node b . It follows that by dropping the first i − 1
bits of Cbar, called part2, and appending this to part1, we

achieve a path from a to a . Appending part3, the first i − 1
bits of Cbar, finishes the path at the predecessor node of b ,
and completes the visitation of all nodes in the cycle C . Fi-
nally, appending part4, the last |C| − i bits of C, brings us
back to complete the cycle C by beginning at the successor

of b and finishing at a; and thus, the full cycle is completed.�

We now define a function that will generate a De Bruijn se-
quence of any order. The function makes use of that fact that there
are two ways (via the type-0 and type-1 interchanges) to build a
De Bruijn sequence of order-n from one of order-(n − 1). The func-
tion takes as input an integer n ≥ 2 and a sequence x of n − 2 bits
(indexed from 0 to n − 3), one bit specifying the interchange type
for each inductive step. For each input pair the function returns a
unique De Bruijn sequence of order n.

function Generate-Generate-DeBruijnDeBruijn (n, x) =
if (n == 2) then [1,1,0,0]
else if (n == 3) then

if (x [0] == 0) then [1,0,1,1,1,0,0,0]
else [1,1,1,0,1,0,0,0]

else Next-Next-DeBruijnDeBruijn (Generate-Generate-DeBruijnDeBruijn(n-1,x),
2 ^ (n-2) + (-1) ^ (x[n-4]), x[n-3]);

PROOF OF CORRECTNESS. The proof follows by induction on n. The
parameter associated with i in the call to Next-DeBruijn is
the expression 2 ^ (n – 2) + (–1) ^ (x[n – 4]). Recall that this
expression is required to be equal to a

w
, where w is the De

Bruijn sequence associated with the first parameter. This is
indeed the case, for the expression corresponds to the iden-
tity for a

w
 in Proposition 1 (identities 3 and 4), since the

expression reflects that the sequence w was constructed via
an interchange of type represented by the bit x[n − 4].
Hence, the correctness of Generate-DeBruijn follows from
the correctness of the Next-DeBruijn function, and the fact
that the stopping conditions are easily verified. �

ACKNOWLEDGMENT

I thank Humberto Ortiz-Zuazaga for his help with the C-language
implementation. This research has been supported in part by U.S.
National Science Foundation Grant CCR–93–09470.

REFERENCES
[1] E.R. Berlekamp, Algebraic Coding Theory. Laguna Hills, Calif.:

Aegean Park Press, 1984.
[2] G.E. Blelloch, “NESL: A Nested Data-Parallel Language,” Techni-

cal Report CMU-CS-94, Carnegie Mellon Univ., 1994.
[3] H. Fredrickson, “A Survey of Full Cycle Algorithms,” SIAM Re-

view, vol. 24, pp. 195–221, 1982.
[4] S.W. Golomb, Shift Register Sequences. San Franciso: Holden-Day,

1967.
[5] A. Lempel, “On a Homomorphism of the De Bruijn Graph and Its

Applications to the Design of Feedback Shift Registers,” IEEE
Trans. Computers, vol. 19, no. 12, pp. 1,204–1,209, Dec. 1970.

[6] A. Ralston, “De Bruijn Sequences—A Model Example of the In-
teraction of Discrete Mathematics and Computer Science,” Am.
Math. Monthly, vol. 55, no. 3, pp. 131–143, May 1982.

Globally Optimal Diagnosis
in Systems with Random Faults

Krzysztof Diks and Andrzej Pelc

Abstract —We consider probabilistic diagnosis in multiprocessor
systems. Processors can test one another; fault-free processors give
correct test results, while faulty testers are unpredictable. Processors
fail independently with constant probability p < 1/2 and the goal is to
identify correctly the status of all processors, based on the set of test
results. A diagnosis algorithm is globally optimal if it has the highest
probability of correctness among all (deterministic) diagnosis
algorithms. We give fast globally optimal diagnosis algorithms for a
class of test assignments including complete directed graphs and
directed acyclic graphs. This is the first time that globally optimal
diagnosis is given in a probabilistic model without any assumptions on
the behavior of faulty processors.

Index Terms —Random fault, syndrome, system-level diagnosis.

———————— ✦ ————————

1 INTRODUCTION

AS large-scale multiprocessor systems have begun to play an im-
portant role in computing, the issue of their reliability has gained
growing attention. One of the major problems in this area, known
as the fault diagnosis problem, is to identify the fault status of all
processors in the system, i.e., to answer the question which of
them are faulty and which are fault-free.

The classical approach to fault diagnosis was originated by
Preparata, Metze, and Chien in their seminal paper [10]. They
studied fault diagnosis in a graph model in which processors are
represented as nodes of the graph and links along which tests can
be performed are represented as edges of the graph. It was as-
sumed that fault-free processors always give correct test results,
while tests conducted by faulty processors are unpredictable: A
faulty tester can output any test result, regardless of the status of
the tested processor. In [10], a worst case scenario was adopted: It
was assumed that at most t processors are faulty and that they are
placed in a way most detrimental for diagnosis. This assumption
precluded the possibility of diagnosis for t larger than the number
of neighbors of any processor.

This model and some of its variations have been thoroughly
studied in literature (cf. [6], where extensive bibliography can be
found). It has been argued that the worst case scenario often fails
to reflect realistic diagnosis situations. As an alternative, various
probabilistic models were proposed (cf. [2], [3], [4], [5], [8], [9],
[11], [12]). Instead of imposing an upper bound on the number of
faulty processors and assuming their worst case location, an a
priori failure probability, independent for each processor, is as-
sumed in these models. Diagnosis is then restricted to sets of
faulty processors of sufficiently high a priori probability [8], in
which case it can be performed unambiguously [5], or is done in
general and has a high probability of correctness [1], [2], [3], [4],
[9], [11], [12].

In this paper, we utilize the probabilistic model previously
studied in [2], [12]. The assumptions concerning test results are the

0018-9340/97/$10.00 ©1997 IEEE

————————————————

• K. Diks is with the Instytut Informatyki, Uniwersytet Warszawski, Banacha 2,
02-097 Warszawa, Poland. E-mail: diks@mimuw.edu.pl.

• A. Pelc is with the Département d’Informatique, Université du Québec à Hull,
Hull, Québec J8X 3X7, Canada. E-mail: pelc@uqah.uquebec.ca.

Manuscript received Apr. 7, 1995; revised Jan. 19, 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96096.

