Search in Peer to Peer Network

Submitted By:

Anshumaan Rajshiva

Introduction

Current peer-to-peer networks are often very inefficient. In this paper, the authors have introduced three techniques for efficient search which greatly reduce the cost. These methods are simple to design and easy to implement in the existing systems.

The three techniques are:

1. Iterative deepening

2. Directed BFS

3. Local Indices

The best search technique for a given system depends on the needs of the application.

Basic Idea

The basic idea behind all the techniques is to reduce the number of nodes that receive and process each query. Doing so reduces the aggregate load generated by each query across the network. Assuming that each node can only answer queries about their own content, then naturally, the fewer nodes that process the query, the fewer results that will be returned. The techniques will only be effective if most queries can be answered by querying fewer nodes

Problem Overview

The purpose of a data-sharing P2P system is to accept queries from

users, and locate and return data (or pointers to the data) to the

users. Each node owns a collection of files or records to be shared with other nodes.

A P2P overlay network can be viewed as an undirected graph, where the vertices correspond to nodes in the network, and the edges correspond to open connections maintained between the nodes. Two nodes maintaining an open connection between themselves are known as neighbors. Messages may be transferred in either direction along the edges. For a message to travel from node A to node B, it must travel along a path in the graph. The length of this traveled path is known as the number of hops taken by the message. Similarly, two nodes are said to be n hops apart if the shortest path between them has length n.

When a user submits a query, her node becomes the source of the query. A source node S may send the query message to any number of its neighbors. The routing policy in use determines to how many neighbors, and to which neighbors, the query is sent. When a node receives a Query message, it will process the query over its local collection. If any results are found at that node, the node will send a single Response message back to the query source.

When a node receives a Query message, it must also decide whether to

forward the message to other neighbors, or to drop it.

Metrics

To measure the effectiveness of the techniques following metrics are measured

Cost: When a query message is propagated through the network, it passes

through a number of nodes. Each of these nodes spends processing

resources (i.e., cycles) on behalf of the query, whether it be to

forward the query, to process the query, or to forward responses back to the source. Similarly, each node uses bandwidth resources on behalf of the query, as it sends and receives Query and Response messages. The

main cost of queries can therefore be described in terms of bandwidth

and processing cost. As the cost of a given query Q is not incurred at any single node in the network therefore the costs are discussed in aggregate. Hence, the two cost metrics are:

· Average Aggregate Bandwidth: the average, over a set of representative queries Qrep, of the aggregate bandwidth consumed (in bytes) over every edge in the network on behalf of each query.

· Average Aggregate Processing Cost: the average, over a set of

 representative queries Qrep, of the aggregate processing power

 consumed at every node in the network on behalf of each query.

Quality of Results: Quality of results can be measured in a number of ways; The following metrics are used:

· Number of results: the size of the total result set.

· Satisfaction of the query: Notifying the first Z results only to the user. The idea is that given a sufficiently large Z, the user can find what she is looking for from the first Z results.

· Time to Satisfaction: Another important aspect of the user experience is how long the user must wait for results to arrive

Iterative Deepening

In systems where satisfaction is the metric of choice, a good technique

is iterative deepening.

Over the iterations of the iterative deepening technique, multiple breadth-first searches are initiated with successively larger depth limits, until either the query is satisfied, or the maximum depth limit D has been reached. Because the number of nodes at each depth grows exponentially ,the cost of processing the query multiple

times at small depths is small, compared to processing query once at a large depth. In addition, if we can satisfy the query at a depth less than D, then we can use much fewer resources than a single BFS of depth D.

The iterative deepening technique is implemented as follows: first, a system-wide policy is needed, that specifies at which depths the iterations are to occur. For example, say we want to have three iterations: the first iteration searches to a depth a, the second to depth b, and the third at depth c. Our policy is therefore P = {a, b,

c}. Note that in order for iterative deepening to have the same performance as a BFS of depth D, in terms of satisfaction, the last depth in the policy must be set to D. In addition to a policy, a waiting period W must also be specified. W is the time between successive iterations in the policy, explained in further detail below.

Under the policy P = {a, b, c}, a source node S first initiates a BFS of depth a by sending out a Query message with TTL= a to all its neighbors. Once a node at depth a receives and processes the message, instead of dropping it, the node will store the message temporarily. The query therefore becomes frozen at all nodes a hops from the source S. Nodes at depth a are known as the frontier of the search. Meanwhile, S receives Response messages from nodes that have processed the query so far. After waiting for a time period W , if S finds that the query has already been satisfied, then it does nothing. Otherwise, if the query is not yet satisfied, S will start the next iteration, initiating a BFS of depth b.

To initiate the next BFS, S could send out another Query message with TTL= b, meaning every node within a hops will process the query a second time. To prevent this wasted effort, however, S will instead send out a Resend message with a TTL of a. Instead of reprocessing the query, a node that receives a Resend message will simply forward the message, or if the node is at the frontier of the search, it will drop the Resend message and unfreeze the corresponding query by forwarding the Query message (with a TTL of b-a) to its neighbors. To identify queries with Resend messages, every query is assigned a system-wide almost unique identifier. The Resend message will contain the identifier of the query it is representing, and nodes at the frontier of a search will know which query to unfreeze by inspecting this identifier. Note that a node need only freeze a query for slightly more than W time units before deleting it.

After the search to depth b, the process continues in a similar fashion to the other levels in the policy. Since c is the depth of the last iteration in the policy, queries will not be frozen at depth c, and S will not initiate another iteration, even if the query is still not satisfied.

Directed BFS

If minimizing response time is important to a particular application, then the iterative deepening technique may not be applicable because of the time taken by multiple iterations. A better strategy that still reduces cost would be to send queries immediately to a subset of nodes that will return many results, and will do so quickly.

The Directed BFS (DBFS) technique implements this strategy by having a query source send Query messages to just a subset of its neighbors, but selecting neighbors through which nodes with many quality results may be reached. For example, one may select a neighbor that has produced or forwarded many quality results in the past, on the premise that past performance is a good indication of future performance. The neighbors that receive the query then continue forwarding the message to all neighbors as with BFS.

In order to intelligently select neighbors, a node will maintain statistics on its neighbors. These statistics can be very simple, such as the number of results that were received through the neighbor for past queries, or the latency of the connection with that neighbor. From these statistics, we can develop a number of heuristics to help us select the best neighbor to send the query. Sample heuristics include:

· Select the neighbor that has returned the highest number of results for previous queries.

· Select neighbor that returns response messages that have taken the lowest average number of hops. A low hop count may suggest that this neighbor is close to nodes containing useful data.

· Select the neighbor that has forwarded the largest number of messages (all types) since our client first connected to the neighbor. A high message count implies that this neighbor is stable, since we have been connected to the neighbor for a long time, and it can handle a large flow of messages.

By sending the query to a small subset of neighbors, the number of nodes that receive the query are reduced by a significant amount, thereby reducing costs incurred by the query.

Local Indices

In the Local Indices technique, a node n maintains an index over the data of each node within r hops of itself, where r is a system-wide variable known as the radius of the index (r = 0 is the degenerate case, where a node only indexes metadata over its own collection). When a node receives a Query message, it can then process the query on behalf of every node within r hops of itself. In this way, the collections of many nodes can be searched by processing the query at few nodes, thereby maintaining a high satisfaction rate and number of results while keeping costs low.

The Local Indices technique works as follows: a policy specifies the depths at which the query should be processed. All nodes at depths not listed in the policy simply forward the query to the next depth.

To create and maintain the indices at each node, extra steps must be taken whenever a node joins or leaves the network, and whenever a user updates his local collection (e.g., inserts a file). When a node X joins the network, it sends a Join message with a TTL of r, which will be received by all nodes within r hops. The Join message contains sufficient metadata over X's collection for another node to answer

queries on node X's behalf. When a node receives the Join message from X , it will in return send a Join message containing metadata over its collection directly to X (i.e., over a temporary connection). Both nodes then add each other's metadata to their own index.

When a node leaves the network or dies, other nodes that index the leaving node's collection will remove the appropriate metadata after a timeout.

When a user updates his collection, his node will send out a small Update message with a TTL of r, containing the metadata of the affected data element (e.g., file or record), and indicates whether the element was inserted, deleted, or updated. All nodes receiving this message subsequently update their index.

Results

Iterative Deepening

[image: image1.png]<

<t

Averaga Agoragals Bandwid (Bytes)

Poley Number

Figure 1: Bandwidth consumption for
various iterative deepening policies

Average Aggrgate Precsssing Pover (Unis)

E G
Poley Number

Figure 2: Processing cost for various

iterative deepening policies

Cost Comparison: Figures 1 and 2 show the cost of each policy, for each value of W , in terms of average aggregate bandwidth and average aggregate processing cost, respectively. Along the x-axis, we vary d, the policy number. Immediately obvious in these figures are the cost savings. Policy P1 at W = 8 uses just about 19% of the aggregate bandwidth per query used by the BFS technique, P7, and just 41% of the

aggregate processing cost per query.

Next, notice that as d increases, the bandwidth consumption of policy Pd increases as well. The larger d is, the more likely the policy will waste bandwidth by sending the query out to too many nodes. For example, if a query Q can be satisfied at a depth of 4, then policies P5; P6, and P7 will overshoot the goal, sending the query out to more nodes than necessary to satisfy Q. Sending the query out to more nodes than necessary will generate extra bandwidth from forwarding the Query message, and transferring Response messages back to the source. Hence, as d increases, bandwidth consumption increases as well, giving P7 the worst bandwidth performance.

Now, notice that as W decreases, bandwidth usage increases. If W is small, there is a higher likelihood that the client will prematurely determine that the query was not satisfied, leading to the overshooting effect.

[image: image2.png]Average Timeto Satisfy (Seconds)

T
Poliey Nurmber

Figure 3: Time to satisfaction for vari-

ous iterative deepening policies

there is an inverse relationship between time to satisfaction and cost. As W increases, the time spent for each iteration grows longer. In addition, as d decreases, the number of iterations needed to satisfy a query will increase, on average. In both of these cases, the time to satisfaction will increase. If all nodes in Gnutella were to use iterative deepening, load on nodes and connections would decrease considerably, thereby decreasing these delays. Time to satisfaction should therefore grow less quickly than is shown in Figure 3, as d increases or W increases.

Directed BFS

Here, choosing a neighbor at random is used as a baseline for comparison with other heuristics.

[image: image3.png]Symibol

TTeuristic: Select neighbar that

RAND | (Randon)

SRES | Retumed the greatest number of results in the past 10 queries

<TIME | Had the shortest average time to satisfaction in the past 10 queries

<HOPS | Had the smallest average number of hops taken by results in the past 10 queries

Sent our client the greatest number of messages (all types)
Had the shortest message queue

Had the shortest latency

Had the highest d

< (number of neighbors)

Table 9: Heuristics used for Directed BFS

[image: image4.png]me To Satiacton

RAND-RES <TIE <HOPS STSG <GLEN wLAT S0EG

Heurisic

Figure 7: Prabability of satisfaction for

various Directed BFS policies

"IN <HOPS STISG <GLEN AT SDEC

Heutstc

KengoEs

gure 8: Time to satisfaction for vari-
ous Directed BFS policies

Figure 7 shows the probability of satisfying, for the different heuristics, for different values of Z. All heuristics except RES, sending the query to the neighbor that has produced the most results in past queries, has the best performance. It is

followed by RES (20% lower than the baseline). Again, we see that past performance is a good indicator of future performance.

It was surprising that >DEG, sending the query to the neighbor with the highest degree, did not perform as well as the other heuristics, with the exception of RES MSG DEG network, and therefore get many results back.

[image: image5.png]Average Aggregate Bandwidth (Bytes)

24l
RAND=RES “TIE <HOPS SIS <GLEN <LAT BEG
Hautstic

Figure 9: Bandwidih consumption for
Directed BES

Directed BFS heuristics yield times to satisfaction comparable to the best times achievable by iterative deepening. However, by sacrificing time to satisfaction, iterative deepening can achieve lower cost than any Directed BFS heuristic. Furthermore, satisfaction for all iterative deepening policies is higher than satisfaction of any Directed BFS heuristic.

Local Indices

[image: image6.png]‘Average Aggregate Bandwidth (Bytes)

Average Agaregate Processing Poner (U

) 5
Radus {f Radis 1)

Figure 11: Bandwidth consumption for Figure 12: Processing cost for Local
Lacal Indices Indices

Figures 11 and 12 give us the cost of the Local Indices policies for various values of QueryJoinRatio (QJR), in terms of average aggregate bandwidth and average aggregate processing cost, respectively. Along the x-axis, we vary the radius r. Recall that r = 0 is the degenerate case where a node keeps an index over its own collection only; P0 is equivalent to a BFS of depth D.

Again, we can see huge cost savings from the Local Indices technique, especially as QueryJoinRatio increases. At QueryJoinRatio = 10, policy P1 uses about 5:8 ? 105 bytes of aggregate bandwidth, which is about 39% of what the default BFS scheme uses (i.e., r = 0), and it uses 3:3 104 units of processing power, which is about 84% of what the default scheme uses. When QueryJoinRatio = 100, only 30% of the bandwidth and 31% of the processing cost of the default scheme is required. We see from both figures that cost decreases as QueryJoin- Ratio increases.

In Figures 11 and 12, as r increases, the cost of the policies decrease,and then increase again.

Time to Satisfaction: In the absence of data from a system that actually uses indices, calculating time to satisfaction for Local Indices is very hard. Thus, we only qualitatively discuss this metric for Local Indices when compared to BFS.

For the typical query, most results under a BFS with depth limit D will come from D hops away. In a Local Indices policy, most results will come from D r hops away. Because most Query and Response messages under Local Indices have r fewer hops to travel, the time to forward messages to the outermost depth and back to the source will be shorter (for r > 0) than for BFS. However, because nodes have larger indices, processing the query should take more time. It is difficult to tell how these

effects balance each other out as r changes, but the time to satisfaction changes slowly with r. Hence, time to satisfaction for Local Indices with small r is comparable to time to satisfaction for BFS (as BFS is equivalent to Local Indices with r = 0).

Conclusions

This paper presents the design and evaluation of three efficient search techniques, over a loosely controlled, pure P2P system. Compared to current techniques used in existing systems, these techniques greatly reduce the aggregate cost of processing queries over the entire system, while maintaining equally high quality of results.

The table given below summarizes the performance tradeoffs between different techniques discussed here:

[image: image7.png]Technique Time | Probabilily | Number | Aggregate
w of of Bandwidth

Satisfy | Satisfaction | Resulis Cost Cost

BFS T00% T00% T00% T00% T00%

Iterative Deepening (d = 5. W = 6) 190% 100% 19% 28% 48%

Ditected BFS (>RES) 140% 86% 38% 28%

Local Indices (7 =1) & 100% 100% 100% 39% 84%

Because of the simplicity of these techniques and their excellent performance, we believe they can make a large positive impact on both existing and future pure P2P systems.

