Routing Indices For Peer-to-Peer Systems

-Final Report-

Submitted by: Svetlana Strunjas

Introduction

This paper introduces distributed-index mechanism for search in P2P networks, based on distributed indices for documents stored in every node. These distributed indices need to be small, so instead using traditional destination indices, authors introduce Routing Indices (RI) that give direction toward document, rather than its actual location.

Authors find great similarity of this searching approach and searching approach implemented in Oceanstore (“Their approach can be considered a special case of compound RI” [1]), with difference that Oceanstore assumes a static network and queries in Oceanstore are based on document identifiers, rather than content.

In this mechanism the way of selecting neighbors for forwarding query is connected with traditional routing algorithms .In fact, an RI can be considered as a generalization of the data structure used for implementing the Bellman-Ford algorithm. Basic differences between this algorithm and standard routing algorithms are :

1.Routing algorithm always choose shortest route to transmit packet, while RI algorithm route query in order to get best answer to it

2.In routing algorithms, destination of packet is pre-defined, while in RI destination of packet depends of content of query

Query Processing in Distributed-Search P2P System

In distributed-search P2P system, user submit query together with stop condition (e.g. number of files which needs to be retrieved). Node receives query, search its own database for given query, returns to the user pointer to its results, and, if the stop condition is not reached, it updates counter, selects one or more of its neighbors and forward query to them.

Queries can be forwarded to the best neighbors in parallel or sequentially. In this paper is used sequential forwarding of queries.

Routing Indices (RI)

A RI is data structure (and associated algorithm), which is used for selecting the best neighbor to send query to. Goodness of node depends on number of related documents in node and nearby nodes.Documents in this system are classified in zero or more topics, and queries request document on particular topic (e.g. Algorithms, Networks, Database etc.)Every node contains local index for quickly finding local documents and RI.

In this paper three different types of RI are introduced:

· Compound RI (CRI)

· Hop-count RI (HRI)

· Exponential RI (ERI)

Compound RIs

As it is mentioned above, every node in P2P network has RI.Compound RI contains :

 1.number of documents along each path

2.the number of documents on each topic of interest.

Measure of goodness is the number of documents that may be found in the path.

Number of results in path is given by :

[image: image1.png]CRI(s;
NumberOf Documents x |1 NumterofDocuments

CRI(s i) is value for the cell at the column for topic s i and at the row for the neighbor. Example and update discussion are given for the tree structure (handling cycles will be explained later) cs:

200 100 0 100 150 [image: image2.png]Number of Documents with topics:
Path | documents | Databases Networks Theory Languages
B 100 20 0 10 30
c 1000 0 300 0 50
D 200 100 0 100 150

Figure 3: A Sample Compound RI

When node changes number of files number of files about certain topic, it first updates its own RI (overall number of documents and number of documents for given topic), then it sends updated information to its neighbors. Every of the neighbors update information in row which contains number of files for neighbor who sent updates, and, after that, it updates it’s own information (overall and for given topic) , and continue to propagate the updates. Update is propagated to all nodes in network.

Hop-count RI(HRI)
Main limitation of CRI is that it does not take into account number of hops for given node. In the hop-count RI we stored aggregated RI for each hop up to the maximum number of hops. Example and update discussions are given for the tree model [image: image3.png]1 Hop 2 Hops
Neighbor | # DB N T L|# DB N T L
X [e0 13 2 5 w|w 10 10 4 17
Y30 0 3 15 12{5 31 0 15 2
z 5 2 0 3 3|70 10 40 20 50

Figure 8: A sample Hop-count RI for node ¥

Simple model, which allows us to compute goodness, in this case is regular tree model. This model assumes that documents are uniformly distributed across the network and that the network is regular tree with fan out F.

So, goodness of neighbor, with respect to query Q is given by

[image: image4.png]goodnesshe(Neighbors, Q) = ,_, , 2tegsililQ)

h - horizon of the hop-count RI

goodness() - the estimator for CRI

Ni[j] - the entry for j hops through Neighbor i

A node that needs to notify its neighbors of an update first builds its aggregated RI in the same way as with CRI. Then it shifts columns to the right, so entries for 1 hop become the entries for 2 hops, the entries for 2 hops become those for 3 hops etc. The entries in the last column of the original RI are discarded and the summary of local index is places as the first column of the new table (one-hop entry). This new aggregated RI is sent to all neighbors, which in turn update their RI.

Exponentially aggregated RI (ERI)

Hop-count RI sometimes is negatively affected by the lack of information beyond the horizon.The exponentially aggregated RI stores the result of applying the regular-tree cost formula to hop-count RI. Each entry of the ERI for node N contains value:

[image: image5.png]goodness(N[j],T)
th Fi-1

th - the height

F - fan out of the assumed regular tree

goodness() - CRI estimator

N[j] - summary of the local index neighbor j of N

T - topic of interest for entry

[image: image6.png]Path # DB N T L

X | 66.67 | 16.33 533 6.33 15.67

Y | 46.67 | 10.33 3.00 20.00 18.67
Z |2833| 5.33 1333 9.67 19.67

FE3)

Figure 9: A sample Exponential Routing Index for Node W'

Example and discussions are given for tree model. Handling the cycles will be explained later.

To update ERI, the node that needs to send an update to neighbor adds up all rows (except the one associate with the neighbor to which update vector is sent) , multiplies the resulting vector by 1/F , and adds the goodness of the summary of its local index.

When neighbor receives this update vector, it replaces the row of the sending node with the new vector and propagates the updates to its neighbors. For updating ERI it is essential to propagate updates only when the new and old values of the vector are different enough (for example by requiring that the Euclidian distance between the two vectors is greater than certain number)

Cycles in P2P Network

There are three general approaches for dealing with cycles:

1.No-op solution

2.Cycle Avoidance Solution

3.Cycle Detection and Recovery Solution

No-op solution

This solution works only with hop-count RI and the exponential RI (compound RI can be trapped in infinite loop)

In the case of HRI, cycles longer than horizon will not affect the cycle. When cycle exists within horizon, then node will be able to “see” its own files through the index tables of its neighbors. Then update will flow and increases through that cycle, until the update reaches the horizon of HRI.

In the case of exponential RI, updates are sent back to originator. But, in this case, the effect of the cycle will be smaller and smaller every time update is sent back (exponential decay), until the difference between the old update and the new update is small enough and algorithm stops to propagate update.

Cycle avoidance solution

In this solution we do not allow nodes to create an update cyclic connection to other nodes. The main disadvantage of this approach is that we may end up with sub optimal update network due to the absence of global information.

Cycle detection and recovery

This solution detects cycles sometime after they are formed, and, after that takes recovery actions to eliminate (or completely neutralize) the effects of the cycles.

In this case originating node and/or update node have to include message identifier in message header. So every time when node receives query, which already has its message ID, it will know that there is cycle and neighbor node, which send that query to him, is also in that cycle. So, in the future, node will ignore messages from that neighbor. This recovery procedure may be reducing the accuracy of the RI, because any of the nodes don’t not have enough information about network to make clever decisions every time.

Algorithms and Data Structure for Routing Indices

Algorithm for creating and updating RI

A node starts next algorithm when it joins the P2P system and remains running until it disconnects. The input to the algorithm is local index (I).

The algorithm uses following functions:

Summary () which summarizes local index I ;

Aggregate (EI) , which aggregates the RI ;

Send(i,A) , which sends A , an aggregated RI ,to neighbor i.

We are assuming that RI is an array where each row i stores the aggregated RI of neighbor i. Row 0 is reserved for the summary of the local index.

The Creation/Update algorithm is divided in two phases. In the first phase, the creation phase, a newly connected node sends a summary of its local index to its neighbors. In the second phase, the update phase, the node waits for update messages or for changes on its local index. The node may wait for a set of changes to batch them together or it may ignore updates that are not significant in order to reduce cost.

After updating its RI, the node sends new aggregate RI to its neighbors.

The aggregated RI contains all rows except the row from the neighbor to which the aggregated RI is sent.

[image: image7.png]RI Creation/Update Algorithm
Input: I
Output: An updated RI (as a side effect)

// Creation phase

RI[0] = Summary(I)

For each neighbor j:
Send(j, RI[0])

// Update phase
OldRI = RI
While (true):
Wait for a batch of aggregated Rls to arrive and for
for the local index to change
For each aggregated RI (if any), A, received from neighbor k:
RI[E] = A,
If local index changed:
RI[0] = Summary(I)
If ORI is different enough than RI:
OldRI = RI
For each neighbor j in RI:
A = Aggregate(RI|(0.
Send(j, A)

j—1j+1.))

Algorithm for answering queries

These algorithm runs every time a new query is received (either submitted by user or forwarded by another node). The input of the algorithm is a query Q, a pointer to the client C that issued the query, and a pointer to the neighbor F that forwarded the query (if any)

The algorithm starts by attempting to answer the query using local database. If not enough local results are obtained to reach the stop condition, then the algorithm ranks all the neighbors by using the Estimator (Q, RI[i]) function(which takes a query Q and a row RI[i] to compute the goodness of neighbor i with respect to that query).Then the node sends the query to each neighbor sequentially , checking if the stop condition was reached whenever each query returns.

[image: image8.png]Answer Query
Input: A query @, aclient C, and a node F
Output: Query answers, Query forwards

Send local answers for Q to C'
If StopCondition():
return
Rank =[]
For each neighbor j except F:
Rank. Append([j, Estimator(RI[j])])
Sort tuples in Rank by second attribute
for ¢ in Rank:
Send query to neighbor ¢[0]
1f StopCondition():
return

Experimental results

In experiments, different models of searching techniques, files distribution and network topologies have been used.

Four different searching techniques are compared:

1.CRI

2.HRI

3.ERI

4.No-RI (for comparison purposes)

Three different network topologies are considered:

1.Tree

2.Tree with randomly added cycles

3.Power-law graph

For modeling location of documents, two different distribution are used:

1. Uniform distribution (all nodes have the same probability of having each document result)

2.80/20 biased distribution (assigns uniformly 80% of the document results to the 20% of nodes, and the remaining 20% of the documents to the remaining 80% of nodes)

Simulation parameters are given in the table:

[image: image9.png]Parameter Name

Description

Base Value

Network Configuration Parameters

NumNodes Number of nodes in the network 60000
T Topology of the P2P network tree

F Branching factor for tree topology 4

EL Extra links to add cycles to tree topology 10

o Outdegree exponent for power law -2.2088
Document Distribution Parameters

QR Number of Query Results available through all local indices | 3125

D Distribution of documents for query g 80/20

RI Paramelers

Creation e Average size of an RI creation/update message T000 byies
Queryaize Average size of a query message 250 bytes
StopCondition | Number of documents requested 10

H Horizon for HRIs 5

A Decay for ERs 4

< RI Compression 0%
minUpdate minimum percentage difference for updates to propagate | 1%

Comparison of CRI,HRI and ERI

[image: image10.png]muniorm
osoz0

=

500

g8 &8 ¢

‘saBessayy Jo soquiny

HAI ERl NoRI

Routing Index

cRl

Number of messages generated for different number of results(CRI and ERI)

[image: image11.png].
s
s

2 3000

S

T a0

£ 0

100

Effects of index compression for CRI,HRI,ERI,No-RI

[image: image12.png]o wm ow % e mm
Index Comprassion

Effects of different cycle-handling policies

[image: image13.png]o 1 10 100 1000
Added Links

Query process and network

[image: image14.png]om0
oo
om0
§ w000
fom
20

1000

Al

WAl Rl

Updates and network

[image: image15.png]om0
oo
om0
§ w000
fom
20

1000

Al

WAl Rl

Updates and cycle policy

[image: image16.png]Messages

1850
1500
1550
1500
1450
1400
1350
1300
1250
1200

Noop
Detect

Updates per minute

[image: image17.png]oo

B — R
. ---ERl

5 2s000M
20000M

£ sooom
To00om |
so0ow |
on |
Ao e e s e
Updates per inute

Conclusions

As we can see from experimental results , RI (and especially ERI and HRI) offer significant improvement versus not using an RI , while keeping update cost low.

Therefore RI(in particular ERI and HRI) can help improve the search performance of current and future peer-to-peer systems.

References:

[1] A.Crespo and H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems.(2001).The 22nd International Conference on Distributed Computing Systems ,Vienna , Austria.

 [2] L.Gravano, H. Garcia-Molina and A.Tomasic.Precision and recall of gloss estimators for database discovery.(1994).In Proceedings of the Third International Conference on Parallel and Distributed Information Systems

[3] J.F.Kurose and K.W.Ross.(1999). Computer Networking – A Top Down Approach Featuring Internet, 2nd ed. , Addison Wesley,ch 4.

May 24,2002

University of Cincinnati

PAGE
6

