
J. P. Cohoon and J. W. Davidson
© 1999 McGraw-Hill, Inc.

Pointers and Dynamic Objects

Mechanisms for developing
flexible list representations

Ch 12 / Foil 2

Pointers

● Usefulness
■ Mechanism in C++ to pass command-line parameters to a

program
– This feature is less important now with the use of

graphical interfaces
■ Necessary for dynamic objects

– Objects whose memory is acquired during program
execution as the result of a specific request

● Dynamic objects can survive the execution of the
function in which they are acquired

– Dynamic objects enable variable-sized lists

Ch 12 / Foil 3

Categorizing Expressions

● Lvalue expressions
■ Represent objects that can be evaluated and modified

● Rvalue expressions
■ Represent objects that can only be evaluated

● Consider
int a;

int c[3];

a = 1; // a is lvalue

c[0] = 2*a; // c[0] and a are lvalues

● Observation
■ Not all lvalues are the names of objects

Ch 12 / Foil 4

Basics

● Pointer
■ Object whose value represents the location of another object
■ In C++ there are pointer types for each type of object

– Pointers to int objects
– Pointers to char objects
– Pointers to RectangleShape objects

■ Even pointers to pointers
– Pointers to pointers to int objects

Ch 12 / Foil 5

Syntax

● Examples of uninitialized pointers

int *iPtr; // iPtr is a pointer to an int

char *s; // s is a pointer to a char

Rational *rPtr; // rPtr is a pointer to a

// Rational

● Examples of initialized pointers
int i = 1;

char c = 'y';

int *ptr = &i; // ptr is a pointer to int i

char *t = &c; // t is a pointer to a char c

Indicates pointer object

Indicates we want the address of the object

Ch 12 / Foil 6

Memory Depiction

int i = 1;

char c = 'y';

int *ptr = &i;

char *t = &c
ptr points to the

address of an
integer

t points to
address of

a
character

i

'y'c

1

t

ptr

Ch 12 / Foil 7

Address Operator

● & use is not limited to definition initialization
int i = 1;

int j = 2;

int *ptr;

ptr = &i; // ptr points to location of i

*ptr = 3; // contents of i are updated

ptr = &j; // ptr points to location of j

*ptr = 4; // contents of j are updated

cout << i << " " << j << endl;

Ch 12 / Foil 8

Indirection Operator

● An asterisk has two uses with regard to pointers
■ We have already seen that in a definition an asterisk

indicates that the object being defined is a pointer
char *s; // s is of type pointer to char

■ In expressions, an asterisk when applied to a pointer
indicates that we want the object to which the pointer points

int i = 1;

int *ptr = &i; // ptr points to i

cout << *ptr << endl; // display a 1

The * indicates indirection or dereferencing.

*ptr is an lvalue

Ch 12 / Foil 9

Null Address

● 0 is a pointer constant that represents the empty or null address
■ Indicates that pointer is not pointing to storage of a valid

object
■ Cannot dereference a pointer whose value is null

int *ptr = 0;

cout << *ptr << endl; // invalid, ptr

// does not point to

// a valid int

Ch 12 / Foil 10

Member Indirection

● Consider
Rational r(4,3);

Rational rPtr = &r;

● To select a member of r through indirection using rPtr operator
precedence requires we do the
following
(*rPtr).Insert(cout);

● This syntax is clumsy, so C++ provides the indirect member
selector operator ->

rPtr->Insert(cout);

Invokes member Insert of the
object to which rPtr points (r)

Invokes member Insert of the
object to which rPtr points (r)

Ch 12 / Foil 11

Traditional Pointer Usage

void IndirectSwap(char *Ptr1, char *Ptr2) {

char c = *Ptr1;

*Ptr1 = *Ptr2;

*Ptr2 = c;

}

int main() {

char a = 'y';

char b = 'n';

IndirectSwap(&a, &b);

cout << a << b << endl;

return 0;

}

Ch 12 / Foil 12

Constants and Pointers

● A constant pointer is a pointer object where we cannot change
the location to which the pointer points
char c = 'c';

const char d = 'd';

char * const ptr1 = &c;

ptr1 = &d; // illegal

● A pointer to a constant value is a pointer object where the value
at the location to which the pointer points is consider constant
const char *ptr2 = &d;

*ptr2 = 'e'; // illegal: cannot change d

// through indirection with ptr2

Ch 12 / Foil 13

Differences

● Local objects and
parameters

■ Object memory is
acquired automatically

■ Object memory is
returned automatically
when object goes out of
scope

● Dynamic object
■ Object memory is

acquired by program with
an allocation request

– new operation
■ Dynamic objects can

exist beyond the function
in which they were
allocated

■ Object memory is
returned by a deallocation
request

– delete operation

Ch 12 / Foil 14

General New Operation Behavior

● Memory for dynamic objects
■ Requested from the free store

– Free store is memory controlled by operating system
● Operation specifies

■ The type and number of objects
● If there is sufficient memory to satisfy the request

■ A pointer to sufficient memory is returned by the operation
● If there is insufficient memory to satisfy the request

■ An exception is generated
– An exception is an error state/condition which if not

handled (corrected) causes the program to terminate

Ch 12 / Foil 15

The Basic New Form

● Syntax
Ptr = new SomeType ;

■ Where
– Ptr is a pointer of type SomeType

● Beware
■ The newly acquired memory is uninitialized unless there is a

default SomeType constructor

Ch 12 / Foil 16

Examples

int *iptr = new int;

Rational *rptr = new Rational;

—iptr

Uninitialized int object

0/1rptr

Rational object with default
initialization

Ch 12 / Foil 17

Another Basic New Form

● Syntax
SomeType *Ptr = new SomeType(ParameterList);

■ Where
– Ptr is a pointer of type SomeType

● Initialization
■ The newly acquired memory is initialized using a SomeType

constructor
■ ParameterList provides the parameters to the constructor

Ch 12 / Foil 18

Examples

int *iptr = new int(10);

Rational *rptr = new Rational(1,2);

10iptr

1/2rptr

Ch 12 / Foil 19

The Primary New Form

● Syntax
P = new SomeType [Expression] ;

■ Where
– P is a pointer of type SomeType

– Expression is the number of contiguous objects of type
SomeType to be constructed -- we are making a list

■ Note
– The newly acquired list is initialized if there is a default

SomeType constructor
● Because of flexible pointer syntax

■ P can be considered to be an array

Ch 12 / Foil 20

Examples

int *A = new int [3];

Rational *R = new Rational[2];

A[1] = 5;

Rational r(2/3);

R[0] = r;

—A

2/3R

5

0/1

—

Ch 12 / Foil 21

Right Array For The Job

cout << "Enter list size: ";

int n;

cin >> n;

int *A = new int[n];

GetList(A, n);

SelectionSort(A, n);

DisplayList(A, n);

● Note
■ Use of the container classes of the STL is preferred from a

software engineering viewpoint
– Example vector class

Ch 12 / Foil 22

Delete Operators

● Forms of request
delete P; // used if storage came from new

delete [] P; // used if storage came from new[]

■ Storage pointed to by P is returned to free store
– P is now undefined

Ch 12 / Foil 23

Cleaning Up

int n;

cout << "Enter list size: ";

cin >> n;

int *A = new int[n];

GetList(A, n);

SelectionSort(A, n);

DisplayList(A, n);

delete [] A;

Ch 12 / Foil 24

Dangling Pointer Pitfall

int *A = new int[5];

for (int i = 0; i < 5; ++i) A[i] = i;

int *B = A;

delete [] A;

A

B
0 1 2 3 4

A

B

Locations do not belong to program

—

?

Ch 12 / Foil 25

Memory Leak Pitfall

int *A = new int [5];

for (int i = 0; i < 5; ++i) A[i] = i;

A = new int [5];

A 0 1 2 3 4

— — — — —

These locations cannot be
accessed by program

A 0 1 2 3 4

Ch 12 / Foil 26

A Simple Dynamic List Type

● What we want
■ An integer list data type IntList with the basic features of

the vector data type from the Standard Template Library
● Features and abilities

■ True object
– Can be passed by value and reference
– Can be assigned and copied

■ Inspect and mutate individual elements
■ Inspect list size
■ Resize list
■ Insert and extract a list

Ch 12 / Foil 27

Sample IntList Usage

IntList A(5, 1);

IntList B(10, 2);

IntList C(5, 4);

for (int i = 0, i < A.size(); ++i) {

A[i] = C[i];

}

cout << A << endl; // [4 4 4 4 4]

A = B;

A[1] = 5;

cout << A << endl; // [5 2 2 2 2 2 2 2 2 2]

class IntList {

public:

// constructors

IntList(int n = 10, int val = 0);

IntList(const int A[], int n);

IntList(const IntList &A);

// destructor

~IntList();

// inspector for size of the list

int size() const;

// assignment operator

IntList & operator=(const IntList &A);

// class IntList definition continued

// inspector for element of constant list

const int& operator[](int i) const;

// inspector/mutator for element of

// nonconstant list

int& operator[](int i);

// resize list

void resize(int n = 0, int val = 0);

// convenience for adding new last element

void push_back(int val);

private:

// data members

int *Values; // pointer to elements

int NumberValues; // size of list

};

// IntList auxiliary operators -- nonmembers

ostream& operator<<(ostream &sout,

const IntList &A);

istream& operator>>(istream &sin, IntList &A);

Ch 12 / Foil 31

Default Constructor

IntList::IntList(int n, int val) {

assert(n > 0);

NumberValues = n;

Values = new int [n];

assert(Values);

for (int i = 0; i < n; ++i) {

Values[i] = val;

}

}

Ch 12 / Foil 32

Gang of Three Rule

● If a class has a data member that points to dynamic memory
then that class typically needs a library-defined

■ Copy constructor
– Constructor that builds an object out of an object of the

same type
■ Member assignment operator

– Resets an object using another object of the same type
as a basis

■ Destructor
– An anti-constructor that typically uses delete the operator

on the data members that point to dynamic memory

Ch 12 / Foil 33

Why A Tailored Copy Constructor

● Suppose we use the default copy constructor
IntList A(3, 1);

IntList B(A);

● And then
A[2] = 2;

● Then
■ B[2] is changed!
■ Not what a client would expect

● Implication
■ Must use tailored copy constructor

A

B

1 2 1

3

3

Ch 12 / Foil 34

Tailored Copy Constructor

IntList::IntList(const IntList &A) {

NumberValues = A.size();

Values = new int [size()];

assert(Values);

for (int i = 0; i < size(); ++i)

Values[i] = A[i];

}

Why kind of subscripting is being
performed?

Ch 12 / Foil 35

Gang Of Three

● What happens when an IntList goes out of scope?
■ If there is nothing planned, then we would have a memory

leak
● Need to have the dynamic memory automatically deleted

■ Define a destructor
– A class object going out of scope automatically has its

destructor invoked

IntList::~IntList() {

delete [] Values;

}

Notice the tilde

Ch 12 / Foil 36

First Assignment Attempt

● Algorithm
■ Return existing dynamic memory.
■ Acquire sufficient new dynamic memory.
■ Copy the size and the elements of the source object to the

target element

Ch 12 / Foil 37

Initial Implementation

IntList& operator=(const IntList &A) {

NumberValues = A.size();

delete [] Values;

Values = new int [NumberValues];

assert(Values);

for (int i = 0; i < A.size(); ++i)

Values[i] = A[i];

return A;

}

● Consider what happens with the code segment
IntList C(5,1);

C = C;

Ch 12 / Foil 38

This Pointer

● Consider
■ this

● Inside a member function or member operator this is a pointer
to the invoking object

IntList::size() {

return NumberValues;

}

or equivalently
IntList::size() {

return this->NumberValues;

}

Ch 12 / Foil 39

Member Assignment Operator

IntList& IntList::operator=(const IntList &A) {

if (this != &A) {

delete [] Values;

NumberValues = A.size();

Values = new int [A.size()];

assert(Values);

for (int i = 0; i < A.size(); ++i) {

Values[i] = A[i];

}

}

return *this;

}

Notice the different uses of
the subscript operator

Why the asterisk?

Ch 12 / Foil 40

Accessing List Elements

// Compute an rvalue (access constant element)

const int& IntList::operator[](int i) const {

assert((i >= 0) && (i < size()));

return Values[i];

}

// Compute an lvalue

int& IntList::operator[](int i) {

assert((i >= 0) && (i < size()));

return Values[i];

}

Ch 12 / Foil 41

Stream Operators

● Should they be members?
class IntList {

// ...

ostream& operator<<(ostream &sout);

// ...

};

● Answer is based on the form we want the operation to take
IntList A(5,1);

A << cout; // member form (unnatural)

cout << A; // nonmember form (natural)

Ch 12 / Foil 42

Beware of Friends

● A class if it needs to
■ Can provide complete access rights to a nonmember

function, operator, or even another class
– Called a friend

● Declaration example
class IntList {

// ...

friend ostream& operator<<(

ostream &sout, const IntList &A);

// ...

};

Ch 12 / Foil 43

Implementing Friend <<

ostream& operator<<(ostream &sout,

const IntList &A){

sout << "[";

for (int i = 0; i < A.NumberValues; ++i) {

sout << A.Values[i] << " ";

}

sout << "]";

return sout;

}

Is there any need for
this friendship?

Ch 12 / Foil 44

Proper << Implementation

ostream& operator<<(ostream &sout,

const IntList &A){

sout << "[";

for (int i = 0; i < A.size(); ++i) {

sout << A[i] << " ";

}

sout << "]";

return sout;

}

