
J. P. Cohoon and J. W. Davidson
© 1999 McGraw-Hill, Inc.

Control Constructs

Mechanisms for deciding when
and how often an action should be

taken

Ch 4 / Foil 2

Boolean Algebra

● Logical expressions have the one of two values - true or false
■ A rectangle has three sides.
■ The instructor has a pleasant smile

● The branch of mathematics that deals with this type of logic is
called Boolean algebra

■ Developed by the British mathematician George Boole in the
19th century

● Three key logical operators
■ And
■ Or
■ Not

Ch 4 / Foil 3

Boolean Algebra

● Truth tables
■ Lists all combinations of operand values and the result of the

operation for each combination
● Example

P Q P and Q

False False False
False True False
True False False
True True True

Ch 4 / Foil 4

Boolean Algebra

● Truth table for or

P Q P or Q

False False False
False True True
True False True
True True True

Ch 4 / Foil 5

Boolean Algebra

● Truth table for not

P Not P

False True
True False

Ch 4 / Foil 6

Boolean Algebra

● Can create complex logical expressions by combining simple
logical expressions

● Example
■ not (P and Q)

● A truth table can be used to determine when a logical expression
is true

P Q P and Q not (P and Q)

False False False True
False True False True
True False False True
True True True False

Ch 4 / Foil 7

A Boolean Type

● C++ contains a type named bool

● Type bool has two symbolic constants
■ true

■ false

● Boolean operators
■ The and operator is &&

■ The or operator is ||

■ The not operator is !

● Warning
■ & and | are also operators

Ch 4 / Foil 8

A Boolean Type

● Example logical expressions
bool P = true;
bool Q = false;
bool R = true;
bool S = P && Q;
bool T = !Q || R;
bool U = !(R && !Q);

Ch 4 / Foil 9

Relational Operators

● Equality operators
■ ==

■ !=

● Examples
■ int i = 32;

■ int k = 45;

■ bool q = i == k;

■ bool r = i != k;

Ch 4 / Foil 10

Relational Operators

● Ordering operators
■ <

■ >

■ >=

■ <=

● Examples
■ int i = 5;

■ int k = 12;

■ bool p = i < 10;

■ bool q = k > i;

■ bool r = i >= k;

■ bool s = k <= 12;

Ch 4 / Foil 11

Operator Precedence Revisited

● Precedence of operators (from highest to lowest)
■ Parentheses
■ Unary operators
■ Multiplicative operators
■ Additive operators
■ Relational ordering
■ Relational equality
■ Logical and
■ Logical or
■ Assignment

Ch 4 / Foil 12

Operator Precedence Revisited

● Examples
5 != 6 || 7 <= 3

(5 !=6) || (7 <= 3)

5 * 15 + 4 == 13 && 12 < 19 || !false == 5 < 24

Ch 4 / Foil 13

Conditional Constructs

● Provide
■ Ability to control whether a statement list is executed

● Two constructs
■ If statement

– If
– If-else
– If-else-if

■ Switch statement

Ch 4 / Foil 14

The Basic If Statement

● Syntax
if (Expression)

Action
● If the Expression is true then

execute Action
● Action is either a single

statement or a group of
statements within braces

● Example
if (Value < 0) {

Value = -Value;

}

Expression

Action

true false

Ch 4 / Foil 15

Sorting Two Numbers

cout << "Enter two integers: ";

int Value1;

int Value2;

cin >> Value1 >> Value2;

if (Value1 > Value2) {

int RememberValue1 = Value1;

Value1 = Value2;

Value2 = RememberValue1;

}

cout << "The input in sorted order: "

<< Value1 << " " << Value2 << endl;

Ch 4 / Foil 16

The If-Else Statement

● Syntax
if (Expression)

Action1
else

Action2
● If Expression is true then

execute Action1 otherwise
execute Action2

if (v == 0) {
cout << "v is 0";

}
else {

cout << "v is not 0";
}

Expression

Action1 Action2

true false

Ch 4 / Foil 17

Finding the Larger of Two Values

cout << "Enter two integers: ";

int Value1;

int Value2;

cin >> Value1 >> Value2;

int Larger;

if (Value1 < Value2) {

Larger = Value1;

}

else {

Larger = Value2;

}

cout << "Larger of inputs is: " Larger << endl;

Ch 4 / Foil 18

Selection

● It is often the case that depending upon the value of an
expression we want to perform a particular action

● Two major ways of accomplishing of this choice
■ If-else-If statement

– If-else statements “glued” together
■ Switch statement

– An advanced construct

Ch 4 / Foil 19

The If-Else-If Statement

● Example
if ((ch == 'a') || (ch == 'A"))

cout << ch << " is a vowel" << endl;
else if ((ch == 'e') || (ch == 'E"))

cout << " ch << " is a vowel" << endl;
else if ((ch == 'i') || (ch == 'I"))

cout << ch << " is a vowel" << endl;
else if ((ch == 'o') || (ch == 'O"))

cout << ch << " is a vowel" << endl;
else if ((ch == 'u') || (ch == 'U"))

cout << ch << " is a vowel" << endl;

else
cout << ch << " is not a vowel" << endl;

Ch 4 / Foil 20

Switch Statement

switch (ch) {

case 'a': case 'A":

case 'e': case 'E":

case 'i': case 'I":

case 'o': case 'O":

case 'u': case 'U":
cout << ch << " is a vowel" << endl;

break;

default:
cout << ch << " is not a vowel" << endl;

}

cout << "Enter simple expression: ";

int Left;

int Right;

char Operator;

cin >> Left >> Operator >> Right;

cout << Left << " " << Operator << " " << Right

<< " = ";

switch (Operator) {

case '+' : cout << Left + Right << endl; break;

case '-' : cout << Left - Right << endl; break;

case '*' : cout << Left * Right << endl; break;

case '/' : cout << Left / Right << endl; break;

default: cout << "Illegal operation" << endl;

}

Ch 4 / Foil 22

Iterative Constructs

● Provide
■ Ability to control how many times a statement list is executed

● Three constructs
■ while statement
■ for statement
■ do-while statement

Ch 4 / Foil 23

The While Statement

● Syntax
while (Expression)

Action
● Semantics

■ If Expression is true then
execute Action

■ Repeat this process until
Expression evaluates to
false

● Action is either a single
statement or a group of
statements within braces

Expression

Action

true false

Ch 4 / Foil 24

Power of Two Table

const int TableSize = 20;

int i = 0;
long Value = 1;

cout << "i" << "\t\t" << "2 ** i" << endl;

while (i <= TableSize) {
cout << i << "\t\t" << Value << endl;
Value *= 2;
++i;

}

Ch 4 / Foil 25

Character Counting

int NumberOfNonBlanks = 0;
int NumberOfUpperCase = 0;
char c;
while (cin >> c) {

++NumberOfNonBlanks;

if ((c >= 'A') && (c <= 'Z')) {
++NumberOfUpperCase;

}
}

Ch 4 / Foil 26

Counting Characters

char c;
int NumberOfCharacters = 0;
int NumberOfLines = 0;
while (cin.get(c)) {

++NumberOfCharacters;
if (c == '\n')

++NumberOfLines
}
cout << "Characters: " << NumberOfCharacters

<< endl;
cout << "Lines: " << NumberOfLines << endl;

int main() {
cout << "Provide a list of numbers" << endl;
int ListSize = 0;
float ValueSum = 0;
int Value;
while (cin >> Value) {

ValueSum += Value;
++ListSize;

}

if (ListSize > 0) {
float Average = ValueSum / ListSize;
cout << "Average: " << Average << endl;

}
else {

cout << "No list to average" << endl;
}

return 0;

}

Ch 4/ Foil 27

The value of the input
operation corresponds to
true only if a successful
extraction was made

Ch 4 / Foil 28

The For Statement

● Syntax
for (ForInit ; ForExpression; PostExpression)

Action
● Semantics

■ Execute ForInit statement
■ While ForExpression is true

– Execute Action
– Execute PostExpression

● Example
for (int i = 0; i < 20; ++i) {

cout << "i is " << i << endl;

}

Ch 4 / Foil 29

Iteration Using the For Statement

ForExpression

Action

true false

ForInit

PostExpression

Ch 4 / Foil 30

Table Revisiting

const int TableSize = 20;

long Value = 1;

cout << "i" << "\t\t" << "2**i" << endl;

for (int i = 0; i <= TableSize; ++i) {
cout << i << "\t\t" << Value << endl;
Value *= 2;

}

The scope of i is limited
to the loop!

Ch 4 / Foil 31

Displaying A Diagonal

SimpleWindow W("One diagonal", 5.5, 2.25);

W.Open();

for (int j = 1; j <= 3; ++j) {

float x = j * 0.75 + 0.25;

float y = j * 0.75 - 0.25;

float Side = 0.4;

RectangleShape S(W, x, y, Blue, Side, Side);

S.Draw();

}

Ch 4 / Foil 32

Sample Display

Ch 4 / Foil 33

Displaying Three Diagonals

SimpleWindow W("Three diagonals", 6.5, 2.25);

W.Open();

for (int i = 1; i <= 3; ++i) {

for (int j = 1; j <= 3; ++j) {

float x = i - 1 + j * 0.75 + 0.25;

float y = j * 0.75 - 0.25;

float Side = 0.4;

RectangleShape S(W, x, y, Blue, Side, Side);

S.Draw();

}

} The scope of i includes the inner loop.
The scope of j is just the inner loop.

Ch 4 / Foil 34

Sample Display

int Counter1 = 0;

int Counter2 = 0;

int Counter3 = 0;

int Counter4 = 0;

int Counter5 = 0;

++Counter1;

for (int i = 1; i <= 10; ++i) {

++Counter2;

for (int j = 1; j <= 20; ++j) {

++Counter3;

}

++Counter4;

}

++Counter5;

cout << Counter1 << " " << Counter2 << " " <<

Counter3 << " " Counter4 << " " Counter5 << endl;

Ch 4/ Foil 35

Ch 4 / Foil 36

For Into While

● Observation
■ The for statement is equivalent to

{

ForInit;

while (ForExpression) {

Action;

PostExpression;

}

}

Ch 4 / Foil 37

Iteration

● Key Points
■ Make sure there is a statement that will eventually nullify the

iteration criterion (i.e., the loop must stop)
■ Make sure that initialization of any loop counters or iterators

is properly performed
■ Have a clear purpose for the loop

– Document the purpose of the loop and how the body of
the loop advances the purpose of the loop

Ch 4 / Foil 38

Riddle

● Four hobos traveling across the country in need of money
● Farmer offers 200 hours of work that could be done over the next

couple of weeks
● The laziest hobo convinces the other three hobos to draw straws
● Each straw would be marked with an amount

■ The amount would represent both the number of days and
the numbers of hours per day that the hobo would work

■ Example
– If the straw was marked three then the hobo who drew it

would work for three hours per day for three days
● What are the best markings of the straws for a clever, lazy hobo?

Ch 4 / Foil 39

Observations

● Need to find sets of whole numbers a, b, c, and d such that
■ a2 + b2 + c2 + d2 = 200

● Maximal legal number is 14 as 152 equals 225 which is greater
than 200

● Minimal legal number is 1
● No advantage to listing the combinations more than once

■ Implication
– Generate the solutions systematically

■ We will make sure that a <= b <= c <= d

Ch 4 / Foil 40

Method

● Generate all possibilities for a where for each a possibility
■ Generate all possibilities of b where for each b possibility

– Generate all possibilities for c where for each c possibility
● Generate all possibilities for d where for each d

possibility
■ Determine whether the current combination is a

solution

Ch 4 / Foil 41

for (int a = 1; a <= 14; ++a) {

for (int b = a; b <= 14; ++b) {

for (int c = b; c <= 14; ++c) {

for (int d = c; (d <= 14); ++d) {

if (a*a + b*b + c*c + d*d == 200) {

cout << a << " " << b << " " << c

<< " " << d << endl;

}

}

}

}

}

Nested For Loop Solution

Ch 4 / Foil 42

Simple Visualization

● What statements can we make about the following data set?
4.90 2.41 0.82 0.77 2.60 5.10 7.52 9.45 9.65
7.81 5.04 2.51 0.95 0.80 2.62

● Statistical analysis analysis indicates that observations come
from interval 0 … 10 with an average value of 4.97 and a
standard deviation of 2.95

● Another approach is to detect whether the sequence of
observations represents a patter

■ Are the numbers arranged for example in Fibonacci order?
● If no patterns are recognized, try data visualization

■ Plot the data set values in a two-dimensional manner
– y-axis correspond to data set values
– x-axis correspond to positions in the data set sequence

#include <iostream> // Program 4.12
#include <string>
#include "rect.h"
using namespace std;
int ApiMain() {

const float Unit = 0.25;
cout << "Enter size of data set: ";
int n;
cin >> n;
SimpleWindow W("Data set display", n+2, 10);
W.Open();
for (float x = 1; x <= n; ++x) {

cout << "Enter data value (n): ";
float y;
cin >> y;
RectangleShape Point(W, x, y, Blue, Unit, Unit);
Point.Draw();

}
return 0;

}

Ch 4 / Foil 44

Sample Run

● Data values do have structure

Ch 4 / Foil 45

The Do-While Statement

● Syntax
do Action
while (Expression)

● Semantics
■ Execute Action
■ if Expression is true then

execute Action again
■ Repeat this process until

Expression evaluates to
false

● Action is either a single
statement or a group of
statements within braces

Action

true

false

Expression

Ch 4 / Foil 46

Waiting for a Proper Reply

char Reply;

do {

cout << "Decision (y, n): ";

if (cin >> Reply)

Reply = tolower(Reply);

else

Reply = 'n';

} while ((Reply != 'y') && (Reply != 'n'));

