
J. P. Cohoon and J. W. Davidson
© 1999 McGraw-Hill, Inc.

Modifying objects

Operators and Expressions



Ch 3 / Foil 2

Memory Depiction

float y = 12.5;

int Temperature = 32;

char Letter = 'c';

int Number;

12.5

32

'c'

y

Temperature

Letter

1001
1002
1003
1004
1005
1006
1007

-Number 1008
1009



Ch 3 / Foil 3

Assignment Statement

● Basic form
● object = expression ;

Celsius = (Fahrenheit - 32) * 5 / 9;

y = m * x + b;

i = i + 1;

Remember = CurrentValue ;
● Action

■ Expression is evaluated
■ Expression value stored in object

Target becomes source



Ch 3 / Foil 4

Assignment Statement

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents;

6

21

NewStudents

OldStudents

-TotalStudents

6

21

NewStudents

OldStudents

27TotalStudents



Ch 3 / Foil 5

Assignment Statement

TotalStudents = NewStudents + OldStudents;

OldStudents = TotalStudents;

6

21

NewStudents

OldStudents

27TotalStudents

6

27

NewStudents

OldStudents

27TotalStudents



Suppose
Value1 = 10;

Value2 = 20;

Consider

int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

10

20

Value1

Value2

20

20

Value1

Value2

10Hold

Value1

Value2

Hold

20

10

10

Ch 3 / Foil 6



Ch 3 / Foil 7

Incrementing

int i = 1;

i = i + 1;

Assign the value of expression i + 1 to i

Evaluates to 2

i 1

2i



Ch 3 / Foil 8

Const Definitions

● Modifier const indicates that an object cannot be changed
■ Object is read-only

● Useful when defining objects representing physical and
mathematical constants

const float Pi = 3.1415;

● Value has a name that can be used throughout the program
const int SampleSize = 100;

● Makes changing the constant easy
■ Only need to change the definition and recompile



// Program 3.2

#include <iostream>

#include <string>

using namespace std;

int main() {

cout << "Enter mass of hydrocarbon (in grams)\n"

"followed by the number of carbon atoms\n"

"followed by the number of hydrogen atoms\n"

"(e.g. 10.5 2 6): " ;

float Mass;

int CarbonAtoms;

int HydrogenAtoms;

cin >> Mass >> CarbonAtoms >> HydrogenAtoms;

Ch 3 / Foil 9



// Program 3.2 (continued)

const int CarbonAMU = 12;

const int HydrogenAMU = 1;

long int FormulaWght = (CarbonAtoms * CarbonAMU)

+ (HydrogenAtoms * HydrogenAMU);

const double AvogadroNbr = 6.02e23;

double Molecules = (Mass / FormulaWght) *

AvogadroNbr;

cout << Mass << " grams of a hydrocarbon\nwith "

<< CarbonAtoms << " carbon atom(s) and "

<< HydrogenAtoms << " hydrogen atom(s)\ncontains "

<< Molecules << " molecules" << endl;

return 0;

}

Ch 3 / Foil 10



Ch 3 / Foil 11

Sample I/O Behavior



Ch 3 / Foil 12

Assignment Conversions

● A floating-point expression assigned to an integer object is
truncated

● An integer expression assigned to a floating-point object is
converted to a floating-point value

● Consider
float y = 2.7;
int i = 15;
int j = 10;
i = y; // i is now 2
cout << i << endl;
y = j; // y is now 10.0
cout << y << endl;



Ch 3 / Foil 13

Compound Assignment

● C++ has a large set of operators for applying an operation to an
object and then storing the result back into the object

● Examples
int i = 3;
i += 4; // i is now 7
cout << i << endl;

float a = 3.2;
a *= 2.0; // a is now 6.4
cout << a << endl;



Ch 3 / Foil 14

Increment and Decrement

● C++ has special operators for incrementing or decrementing an
object by one

● Examples
int k = 4;
++k; // k is 5

k++; // k is 6
cout << k << endl;
int i = k++; // i is 6, k is 7
cout << i << " " << k << endl;
int j = ++k; // j is 8, k is 8
cout << j << " " << k << endl;



Ch 3 / Foil 15

Nonfundamental Types

● Nonfundamental as they are additions
● C++ permits definition of new types and classes

■ A class is a special kind of type
● Class objects typically have

■ Data members that represent attributes and values
■ Member functions for object inspection and manipulation
■ Members are accessed using the selection operator (.)

j = s.size();

■ Auxiliary functions for other behaviors
● Libraries often provide special-purpose types and classes
● Programmers can also define their own types and classes



Ch 3 / Foil 16

Nonfundamental Types

● Examples
■ Standard Template Library (STL) provides class string

■ EzWindows library provides some graphical types and
classes

– SimpleWindow is a class for creating and manipulating
window objects

– RectangleShape is a class for creating and
manipulating rectangle objects



Ch 3 / Foil 17

Nonfundamental Types

● To access a library use a preprocessor directive to add its
definitions to your program file

#include <string>

● Using statement makes syntax less clumsy
■ Without it

std::string s = "Wahoo";

std::string t = "Spiffy";

■ With it
using namespace std; // std contains string

string s = "Wahoo";

string t = "Spiffy";



Ch 3 / Foil 18

Class string

● Class string
■ Used to represent a sequence of characters as a single

object
● Some definitions

string Name = "Joanne";

string DecimalPoint = ".";

string Question = '?'; // illegal



Ch 3 / Foil 19

Class string

● Some string member functions
■ size() determines number of characters in the string

string Saying = "Rust never sleeps.";

cout << Saying.size() << endl; // 18

■ substr() determines a substring (Note first position has index 0)
string Word = Saying.substr(11, 16); // sleeps

■ find() computes the position of a subsequence
int j = Word.find("ee"); // 2

int k = Rust.find("steel"); // ?



Ch 3 / Foil 20

Class string

● Auxiliary functions and operators
■ getline() extracts the next input line

string Response;

cout << "Enter text: ";

getline(cin, Response, '\n');

cout << "Response is \"" << Response

<< "\"” << endl;

■ Example run
Enter text: Want what you do

Response is "Want what you do"



Ch 3 / Foil 21

Class string

● Auxiliary operators
■ + string concatenation

string Part1 = "Me";

string Part2 = " and ";

string Part3 = "You";

string All = Part1 + Part2 + Part3;

■ += compound concatenation assignment
string ThePlace = "Brooklyn";

ThePlace += ", NY";



#include <iostream> // Program 3.4
#include <string>
using namespace std;
int main() {

cout << "Enter the date in American format: "
<< "(e.g., December 29, 1953) : ";

string Date;
getline(cin, Date, '\n');
int i = Date.find(" ");
string Month = Date.substr(0, i);
int k = Date.find(",");
string Day = Date.substr(i + 1, k - i - 1);
string Year = Date.substr(k + 2, Date.size() - 1);
string NewDate = Day + " " + Month + " " + Year;
cout << "Original date: " << Date << endl;
cout << "Converted date: " << NewDate << endl;
return 0;

}



Ch 3 / Foil 23

EzWindows Library Objects

● Definitions are the same form as other objects
● Example

SimpleWindow W;

● Most non-fundamental classes have been created so that an
object is automatically initialized to a sensible value

● SimpleWindow objects have member functions to process
messages to manipulate the objects

● Most important member function is Open() which causes the
object to be displayed on the screen

● Example
W.Open();



Ch 3 / Foil 24

Initialization

● Non-fundamental objects may have several attributes to initialize
● Syntax for initializing an object with multiple attributes

Type Identifier(Exp 1, Exp 2, ..., Exp n);

● SimpleWindow definitions can optionally specify attributes
SimpleWindow W("Window Fun", 8, 4);

■ First attribute
– Window banner

■ Second attribute
– Width of window in centimeters

■ Third attribute
– Height of window in centimeters



Ch 3 / Foil 25

An EzWindows Program

#include <iostream>

#include <string>
using namespace std;

#include "ezwin.h"
int ApiMain() {

SimpleWindow W("A Window", 12, 12);
W.Open();

cout << "Enter a character to exit" << endl;
char a;

cin >> a;

return 0;
}



Ch 3 / Foil 26

Sample Display Behavior



Ch 3 / Foil 27

RectangleShape Objects

● EzWindows library also provides RectangleShape class for
manipulating rectangles

● RectangleShape objects can specify the following attributes
■ A SimpleWindow object that contains the rectangle

(mandatory)
■ Offset from left edge of the SimpleWindow

■ Offset from top edge of the SimpleWindow

– Offsets are measured in centimeters from rectangle center
■ Width in centimeters
■ Height in centimeters
■ Color

– color is an EzWindows type



Ch 3 / Foil 28

RectangleShape Objects

● Examples
SimpleWindow W1("My Window", 20, 20);

SimpleWindow W2("My Other Window", 15, 10);

RectangleShape R(W1, 4, 2, Blue, 3, 2);

RectangleShape S(W2, 5, 2, Red, 1, 1);

RectangleShape T(W1, 3, 1, Black, 4, 5);

RectangleShape U(W1, 4, 9);



Ch 3 / Foil 29

RectangleShape Objects

● Major RectangleShape member functions for processing
messages

■ Draw()

– Causes rectangle to be displayed in its associated
window

■ GetWidth()

– Returns width of object in centimeters
■ GetHeight()

– Returns height of object in centimeters
■ SetSize()

– Takes two attributes -- a width and height -- that are used
to reset dimensions of the rectangle



Ch 3 / Foil 30

Another EzWindows Program

#include <iostream>
#include <string>
using namespace std;
#include "rect.h"
int ApiMain() {

SimpleWindow W("Rectangular Fun", 12, 12);
W.Open();
RectangleShape R(W, 5.0, 2.5, Blue);
R.Draw();
cout << "Enter a character to exit" << endl;
char Response;
cin >> Response;
return 0;

}



Ch 3 / Foil 31

Sample Display Behavior


