
J. P. Cohoon and J. W. Davidson
© 1999 McGraw-Hill, Inc.

The Fundamentals of C++

Basic programming elements and
concepts

Ch 2 / Foil 2

● Program statement
■ Definition
■ Declaration
■ Action

● Executable unit
■ Named set of program statements
■ Different languages refer to executable units by different

names
– Subroutine: Fortran and Basic
– Procedure: Pascal
– Function : C++

Program Organization

Ch 2 / Foil 3

Program Organization

● C++ program
■ Collection of definitions, declarations and functions
■ Collection can span multiple files

● Advantages
■ Structured into small understandable units
■ Complexity is reduced
■ Overall program size decreases

Ch 2 / Foil 4

Object

● Object is a representation of some information
� Name
� Values or properties

– Data members
� Ability to react to requests (messages)!!

– Member functions
● When an object receives a message, one of two actions are

performed
� Object is directed to perform an action
� Object changes one of its properties

Ch 2 / Foil 5

// Program: Display greetings
// Author(s): Ima Programmer
// Date: 1/25/1999
#include <iostream>
#include <string>
using namespace std;
int main() {

cout << "Hello world!" << endl;
return 0;

}

A First Program - Greeting.cpp

Preprocessor
directives

Insertion
statement

Ends executions
of main() which ends

program

Comments

Function

Function
named
main()

indicates
start of

program

Provides simple access

Ch 2 / Foil 6

Greeting Output

Definitions

Extraction

Definition with
initialization

Area.cpp
#include <iostream>

#include <string>

using namespace std;

int main() {
// Extract length and width
cout << "Rectangle dimensions: ";

float Length;

float Width;

cin >> Length >> Width;

// Compute and insert the area

float Area = Length * Width;

cout << "Area = " << Area << " = Length "

<< Length << " * Width " << Width << endl;

return 0;

}

Ch 2 / Foil 8

Area.cpp Output

Ch 2 / Foil 9

Comments
● Allow prose or commentary to be included in program
● Importance

■ Programs are read far more often than they are written
■ Programs need to be understood so that they can be

maintained
● C++ has two conventions for comments

■ // single line comment (preferred)
■ /* long comment */ (save for debugging)

● Typical uses
■ Identify program and who wrote it
■ Record when program was written
■ Add descriptions of modifications

Ch 2 / Foil 10

Fundamental C++ Objects

● C++ has a large number of fundamental or built-in object types
● The fundamental object types fall into one of three categories

■ Integers objects
■ Floating-point objects
■ Character objects

1
1.28345

Z
5

P
3.14

Ch 2 / Foil 11

Integer Object Types

● The basic integer object type is int

■ The size of an int depends on the machine and the compiler
– On PCs it is normally 16 or 32 bits

● Other integers object types
■ short : typically uses less bits
■ long : typically uses more bits

● Different types allow programmers to use resources more
efficiently

● Standard arithmetic and relational operations are available for
these types

Ch 2 / Foil 12

Integer Constants

● Integer constants are positive or negative whole numbers
● Integer constant forms

■ Decimal
■ Octal (base 8)

– Digits 0, 1, 2, 3, 4, 5, 6, 7
■ Hexadecimal (base 16)

– Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a , b, c, d, e, f
● Consider

■ 31 oct and 25 dec

Ch 2 / Foil 13

Specifying Syntax

● Need
■ A notation for exactly expressing a programming language

element
– Notation is describing the programming language
– Notation is not part of the programming language

● Notation must be able to describe
■ Elements that have several forms
■ Elements that are

– Required
– Optional
– Repeated

Ch 2 / Foil 14

Notation Conventions

● Parentheses ()
■ Anything surrounded by parentheses must be used

● Braces []
■ Anything surrounded by brackets is optional

● Vertical line |
■ Elements on either side of the line are acceptable

● Ellipsis ...
■ The pattern established before the ellipsis continues

● Specifier
■ Name of a language element

Ch 2 / Foil 15

Notation Examples

● NonZeroDigit
■ 1 | 2 | ... 9

● Digit
■ 0 | NonZeroDigit

● OctalDigit
■ 0 | 1 | ... 7

● HexDigit
■ 0 | 1 | ... 9 | A | B | ... F | a | b | ... f

● Digits
■ NonZeroDigit [Digit ... Digit]

Ch 2 / Foil 16

Decimal Constants

● Examples
■ 97
■ 40000L
■ 50000
■ 23a (illegal)

● The type of the constant
depends on its size, unless
the type specifier is used

Digits [L | l]

Sequence of one
or more digits

digits

Optional
L or l

Ch 2 / Foil 17

Octal Constants

● Examples
■ 017
■ 0577777L
■ 01267333l
■ 01267335
■ 0482 (illegal)

● The type of the constant
depends on its size, unless
the type specifier is used

OctalDigits [L | l]

Sequence of one
or more octal

digits. First digit
must be 0

Optional
L or l

Ch 2 / Foil 18

Hexadecimal Constants

● Letters represent the hex digits
a or A - 10 d or D - 13
b or B - 11 e or E - 14
c or C - 12 f or F - 15

● Examples
■ 0x2C
■ 0XAC12EL

● The type of the constant depends on its size, unless the
type specifier is used

Ch 2 / Foil 19

Character Object Types

● Character type char is related to the integer types
● Characters are encoded using a scheme where an integer

represents a particular character
● ASCII is the dominant encoding scheme

■ Examples
– ' ' encoded as 32
– '+' encoded as 43
– 'A' encoded as 65
– 'Z' encoded as 90
– 'a' encoded as 97
– 'z' encoded as 122

Ch 2 / Foil 20

Character Operations

● Arithmetic and relational operations are defined for characters
types

■ 'a' < 'b' is true
■ '4' > '3' is true
■ 'b' + 2 produces the number that represents 'd'

■ '8' - '3' produces 5

● Arithmetic with characters needs to be done with care
■ '9' + 3 produces the number that represents '<'

Ch 2 / Foil 21

Character Constants

● Explicit characters within single quotes
'a'

'D'

'*'

● Special characters - delineated by a backslash \
■ Two character sequences (sometimes called escape codes)

within single quotes
■ Important special characters

'\t' denotes a tab
'\n' denotes a new line
'\\' denotes a backslash

Ch 2 / Foil 22

Escape Codes

Character ASCII Name Sequence
newline NL \n

horizontal tab HT \t

backspace BS \b

form feed FF \f

alert or bell BEL \a

carriage return CR \r

vertical tab VT \v

backslash \ \\

single quote ' \'

double quote " \"

question mark ? \?

Ch 2 / Foil 23

Literal String Constants

● A literal string constant is a sequence of zero or more characters
enclosed in double quotes

■ "Are you aware?\n"

● Individual characters of string are stored in consecutive memory
locations

● The null character ('\0') is appended to strings so that the
compiler knows where in memory strings ends

A r e y uo w a r e

0
1

0
0

4
0

0
1

0
0

4
1

0
1

0
0

4
2

...

0
1

0
0

5
5

? \n \0a

Memory

0
1

0
0

5
4

Ch 2 / Foil 24

Floating-Point Object Types

● Floating-point object types represent real numbers
■ Integer part
■ Fractional part

● The number 108.1517 breaks down into the following parts
■ 108 - integer part
■ 1517 - fractional part

● C++ provides three floating-point object types
■ float

■ double

■ long double

Ch 2 / Foil 25

Floating-Point Constants

● Standard decimal notation
■ Digits . Digits [f | F | l | L]

134.123
0.15F

● Standard scientific notation
■ Digits . Digits Exponent [f | F | l | L]
■ Where

– Exponent is (e | E) [+ | -] Digits
1.45E6
0.979e-3L

● When not specified, floating-point constants are of type double

Ch 2 / Foil 26

Names

● Used to denote program values or components
● A valid name is a sequence of

■ Letters (upper and lowercase)
■ Digits

– A name cannot start with a digit
■ Underscores

– A name should not normally start with an underscore
● Names are case sensitive

■ MyObject is a different name than MYOBJECT
● There are two kinds of names

■ Keywords
■ Identifiers

Ch 2 / Foil 27

Keywords

● Keywords are words reserved as part of the language
– int, return, float, double

■ They cannot be used by the programmer to name things
■ They consist of lowercase letters only
■ They have special meaning to the compiler

Ch 2 / Foil 28

Keywords

asm do if return typedef

auto double inline short typeid

bool dynamic_cast int signed typename

break delete long sizeof union

case else mutable static unsigned

catch enum namespace static_cast using

char explicit new struct virtual

class extern operator switch void

const false private template volatile

const_cast float protected this wchar_t

continue for public throw while

default friend register true union

delete goto reinterpret_cast try unsigned

Ch 2 / Foil 29

Identifiers

● Identifiers should be
■ Short enough to be reasonable to type (single word is norm)

– Standard abbreviations are fine (but only standard
abbreviations)

■ Long enough to be understandable
– When using multiple word identifiers capitalize the first

letter of each word
● Examples

■ Min
■ Temperature
■ CameraAngle
■ CurrentNbrPoints

Ch 2 / Foil 30

Definitions

● All objects that are used in a program must be defined
● An object definition specifies

■ Type
■ Name

● A common definition form

■ Our convention is one definition per statement !

Type Id, Id, ..., Id;

Known
type

List of one or
more identifiers

Ch 2 / Foil 31

Examples

char Response;

int MinElement;

float Score;

float Temperature;

int i;

int n;

char c;

float x;

Objects are uninitialized with
this definition form

(Value of a object is
whatever is in its
assigned memory location)

Ch 2 / Foil 32

Arithmetic Operators

● Common
■ Addition +
■ Subtraction -
■ Multiplication *
■ Division /
■ Mod %

● Note
■ No exponentiation operator
■ Single division operator
■ Operators are overloaded to work with more than one type of

object

Write m*x + b
not mx + b

Ch 2 / Foil 33

Integer Division

● Integer division produces an integer result
■ Truncates the result

● Examples
■ 3 / 2 evaluates to 1
■ 4 / 6 evaluates to 0
■ 10 / 3 evaluates to 3

Ch 2 / Foil 34

Mod

● Produces the remainder of the division
● Examples

5 % 2evaluates to 1
12 % 4evaluates to 0
4 % 5evaluates to 4

Ch 2 / Foil 35

Operators and Precedence

● Consider mx + b
● Consider m*x + b which of the following is it equivalent to

■ (m * x) + b

■ m * (x + b)

● Operator precedence tells how to evaluate expressions
● Standard precedence order

■ () Evaluate first, if nested innermost
done first

■ * / % Evaluate second. If there are several,
then evaluate from left-to-right

■ + - Evaluate third. If there are several,
then evaluate from left-to-right

Ch 2 / Foil 36

Operator Precedence

● Examples
1 + 2 * 3 / 4 - 5

2 * 4 / 5 + 3 * 5 % 4

3.0 * 3 / 4

(1 + 3) * ((2 + 4 * 6) * 3) / 2 + 2

Ch 2 / Foil 37

Defining and Initializing

● When an object is defined using the basic form, the memory
allotted to it contains random information

■ Good idea to specify its desired value at the same time
– Exception is when the next statement is an extraction for

the object

● Our convention is one definition per statement !

Type Id = Exp, Id = Exp ..., Id = Exp;

Known type Identifiers
Expressions are used to

initialize corresponding objects

Ch 2 / Foil 38

Examples

int FahrenheitFreezing = 32;

char LetterGrade = 'A';

cout << "Slope of line: ";

float m;

cin >> m;

cout << "Intercept: ";

float b;

cin >> b;

cout << "X value of interest: ";

float x;

cin >> x;

float y = (m * x) + b;

// Program 2.11: Compute velocity of car

#include <iostream>

#include <string>

using namespace std;

int main() {

cout << "All inputs are integers!\n";

cout << "Start milepost? ";

int StartMilePost;

cin >> StartMilePost;

cout << "Elapsed time (hours minutes seconds)? ”;

int EndHour;

int EndMinute;

int EndSecond;

cin >> EndHour >> EndMinute >> EndSecond;

cout << "End milepost? ";

int EndMilePost;

cin >> EndMilePost;

float ElapsedTime = EndHour + (EndMinute / 60.0)

+ (EndSecond / 3600.0);

int Distance = EndMilePost - StartMilePost;

float Velocity = Distance / ElapsedTime;

cout << "\nCar traveled " << Distance

<< " miles in ";

cout << EndHour << " hrs " << EndMinute

<< " min " << EndSecond << " sec\n";

cout << "Average velocity was " << Velocity
<< " mph " << endl;

return 0;

}

