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a b s t r a c t

Idea generation is a fundamental attribute of the human mind, but the cognitive and neural mechanisms
underlying this process remain unclear. In this paper, we present a dynamic connectionist model for
the generation of ideas within a brainstorming context. The key hypothesis underlying the model is
that ideas emerge naturally from itinerant attractor dynamics in a multi-level, modular semantic space,
and the potential surface underlying this dynamics is itself shaped dynamically by task context, ongoing
evaluative feedback, inhibitory modulation, and short-term synaptic modification. While abstract, the
model attempts to capture the interplay between semantic representations, workingmemory, attentional
selection, reinforcement signals, and modulation. We show that, once trained on a set of contexts and
ideas, the system can rapidly recall stored ideas in familiar contexts, and can generate novel ideas by
efficient, multi-level dynamical search in both familiar and unfamiliar contexts.
We also use a simplified continuous-time instantiation of the model to explore the effect of priming

on idea generation. In particular, we consider how priming low-accessible categories in a connectionist
semantic network can lead to the generation of novel ideas. The mapping of the model onto various
regions and modulatory processes in the brain is also discussed briefly.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to generate relevant ideas in familiar and novel
contexts is a central characteristic of the human mind, and has
been studied extensively through behavioral experiments in the
context of brainstorming (Osborn, 1957). These experiments have
uncovered various social and cognitive factors that influence idea
generation (Coskun, Paulus, Brown, & Sherwood, 2000; Dugosh
& Paulus, 2005; Nijstad & Stroebe, 2006; Paulus & Brown, 2003;
Paulus & Dzindolet, 1993), and have shown that priming with
hints during brainstorming can enhance both the number and
the quality of the generated ideas (Coskun et al., 2000; Dugosh,
Paulus, Roland, & Yang, 2000; Nijstad, Stroebe, & Lodewijkx, 2002).
Understanding these factors is crucial to developing better
brainstorming protocols, and for explaining the idea generation
process in human cognition.
Several brainstorming models based on associative memory

have been developed (Brown, Tumeo, Larey, & Paulus, 1998;
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Nijstad & Stroebe, 2006; Paulus & Brown, 2003), and while they
account for results observed in behavioral experiments, they
provide limited insight into the underlying neural processes. The
SIAMmodel by Nijstad and Stroebe (2006) is a flow-chart diagram
of the search process for ideas, and is based on the free-recall
model (SAM) by Raaijmakers and Shiffrin (1981). While the model
describes the logical interplay between search cues, associative
semantic memory, learning of retrieved ideas and storage in
working memory and episodic memory, it is a high-level model
that does not explain the process of how new ideas are generated.
The associative model by Brown et al. (1998) and Paulus and
Brown (2003) represents semantic knowledge as a network of
categories and the retrieval of ideas from it as a stochastic Markov-
type process. This model has been very successful in explaining
brainstorming experiments (Coskun et al., 2000; Dugosh & Paulus,
2005; Dugosh et al., 2000; Paulus, Nakui, Brown, & Putman, 2006)
and in predicting factors that would enhance brainstorming
productivity. The model is able to emulate short-term memory
effects and attention to others’ ideas, and can model different
styles of ideation (e.g. divergent and convergent thinking). The
main shortcoming of this model too is the abstract representation
of individual ideas, precluding the explicit consideration of ideas,
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Fig. 1. Architecture of the hypothesizedmodel for idea generation and its approximatemapping onto brain regions (Abbreviations: VLPFC— ventrolateral prefrontal cortex;
DLPFC — dorsolateral prefrontal cortex; ACC — anterior cingulate cortex).
assessing their quality or novelty, and modeling the dynamics of
the idea generation process.
Our group has recently proposed a connectionist model for

the dynamics of idea generation (Brown & Doboli, 2006; Doboli
& Minai, 2005; Doboli, Minai, & Brown, 2007; Iyer, Minai, Doboli,
& Brown, 2007, 2008), motivated by experimental results on the
neurobiology of semantic cognition (Caramazza & Mahon, 2003;
Damasio, 1989; Damasio, Grabowski, Tranel, Hichwa, & Damasio,
1996; Damasio, Tranel, Grabowski, Adolphs, & Damasio, 2004;
Kellenbach, Brett, & Patterson, 2001; Martin, 2007; Patterson,
Nestor, & Rogers, 2007; Warrington & Shallice, 1984), and theories
of semantic organization (Andrews, Vigliocco, & Vinson, in press;
Blei, Ng, & Jordan, 2003; Burgess & Lund, 1997; Griffiths, Steyvers,
& Tenenbaum, 2007; Landauer & Dumais, 1997; McRae, de Sa, &
Seidenberg, 1997;Mueller & Shiffrin, 2006; Steyvers& Tenenbaum,
2005; Verguts, Ameel, & Storms, 2004; Vigliocco, Vinson, Lewis,
& Garrett, 2004), as well as insights from other connectionist
models of semantic information processing (Kruschke, 1992;
McClelland & Rogers, 2003; Moss, Hare, Day, & Tyler, 1994). The
model is now being extended to simulate and explain actual data
from behavioral experiments. In this paper, we apply the model
to explain experimental effects of priming during the ideation
process (Coskun et al., 2000; Dugosh & Paulus, 2005; Dugosh et al.,
2000; Nijstad et al., 2002).

2. The idea generation process

Semantic information in the brain is represented at several
levels, ranging from combinations of sensorimotor features
(Martin, 2007; Warrington & Shallice, 1984), through amodal
concepts (Kellenbach et al., 2001; Patterson et al., 2007), to
semantic categories (Caramazza & Mahon, 2003). Considerable
evidence now supports the idea that semantic processing involves
several cortical functional networks that process and integrate
information at all these levels (Damasio, 1989; Damasio et al.,
1996, 2004; Martin, 2007). The areas involved include the left
temporal lobe, the prefrontal cortex, the anterior cingulate cortex,
the orbitofrontal cortex and parts of the occipital cortex. Regions
of the right hemisphere temporal and parietal cortices are also
involved (Bowden, Jung-Beeman, Fleck, & Kounios, 2005), and
may provide a crucial non-linguistic component needed for the
intuitive generation of novel ideas (Bowden et al., 2005; Duch,
2007; Heilman, Nadeau, & Beversdorf, 2003; Schilling, 2005). The
flow of information in these cortical networks is controlled by
switching processes in the basal ganglia (Graybiel, 1995; Houk,
2005), and is modulated by dopaminergic (Apicella, 2007; Schultz,
2000) and noradrenergic (Aston-Jones & Cohen, 2005) signals
reflecting judgments of value.
The organization and use of semantic knowledge has also

been studied extensively by researchers in linguistic cognition
and computational linguistics. Several models of meaning have
been developed based either on sensorimotor experiential features
(Andrews et al., in press;McRae et al., 1997; Verguts et al., 2004), or
on more abstract features derived from the distribution of words
in text corpora (Blei et al., 2003; Burgess & Lund, 1997; Griffiths
et al., 2007; Landauer & Dumais, 1997). Both approaches typically
use multi-level representations of semantic knowledge in terms of
features, concepts, categories, topics, etc.
Following the semantic networks approach (Boden, 1995;

Mednick, 1962), we postulate that concepts are the key elements
of the semantic space, and that ideas are combinations of concepts
that arise through the dynamics of networks linking them with
each other based on previous learning. This dynamics is modeled
as an itinerant flow (Tsuda, 2001) where groups of co-activated
concepts arise as resonant metastable patterns of activity in
concept space (Doboli, Brown, & Minai, 2009; Iyer, Minai, Doboli,
Brown, & Paulus, 2009; Minai, Iyer, Padur, & Doboli, 2009), and the
itinerant dynamics generating themcan be seen as a self-organized
search process. This dynamics is modulated over time by factors
such as external context, recently generated ideas and evaluative
feedback from a critic to make the search more efficient.
The broad architecture of our idea generation model is

shown in Fig. 1. Motivated by results from neuroscience and
theories of semantic cognition, the model represents semantic
knowledge in terms of features, concepts and categories. It also
incorporates ideas from reinforcement learning (Sutton & Barto,
1998) and selection-based control (Graybiel, 1995; Houk, 2005).
The figure indicates how the system’s components might map
qualitatively to specific brain regions: The encoding of features
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is identified with lower-level association cortices and pre-motor
regions (Martin, 2007; Warrington & Shallice, 1984); ideas and
concepts are associated with higher-level association regions
(Damasio et al., 1996, 2004; Kellenbach et al., 2001; Martin, 2007;
Patterson et al., 2007); working memory is associated with the
dorsolateral prefrontal cortex (Durstewitz, Seamans, & Sejnowski,
2000; Fuster, 2000; Goldman-Rakic, 1995), while the basal ganglia
are hypothesized to function as the ‘‘gate’’ for the internal attention
function of cognitive control (Frank & Claus, 2006; Graybiel,
1995; Houk, 2005). The system can be seen as comprising two
complementary sub-systems: (1) An idea generation sub-system
(IGS) that embeds semantic knowledge and whose dynamics
generates ideas as conceptual combinations; and (2) A critic, which
receives the generated ideas and produces evaluative feedback
based on its domain knowledge about the given context. The
key features of the IGS are the dynamic interactions among the
different semantic levels and attractor dynamics within each level.
Given a context, the task of the IGS is to produce ideas that meet
specific quality criteria as evaluated by the critic using its internal
model. Thus, the IGS basically learns to adapt its dynamics to the
critic’s liking.
In this paper, we present two instantiations of this broadmodel.

The first one is a system with multiple interacting semantic levels,
which is used to generate ideas in familiar and novel contexts.
The second one is a simplified continuous-time version of the
system that models the dynamics of idea generation as abstract
conceptual combinations, and simulates the effect of external
priming targeted to more or less accessible conceptual categories.

3. Multi-level idea generation model

Our first model includes the feature, concept and cognitive
control components of the system shown in Fig. 1. It receives
a context input and evaluative feedback from a critic. The cen-
tral principle is that the search for ideas should emerge from the
natural dynamics of the system under appropriate stimulus sit-
uations, i.e., when the system is given a task/problem context,
its natural response should be to search for and generate rele-
vant ideas. To be effective, the emergent search process must be
both systematic and flexible, striking an appropriate and adap-
tive balance between the exploitation of prior knowledge and the
exploration of new possibilities (Sutton & Barto, 1998). Purely ran-
dom search is clearly not efficient, but nor is a rigid, stereotypical
search that only follows previously known trajectories. The search
should also not get trapped easily in sub-optimal situations, or ig-
nore useful information that is available.
To meet these imperatives, we model the search for ideas as a

two-level process:

• Dynamic configuration of an Effective Search Domain (ESD): At
this level, the system identifies a subset within the concept
space within which to focus its search in the expectation that
this subspace is disproportionately dense in good ideas for the
given context. This ESD is instantiated as a slowly adaptive
selectional bias created by attractor dynamics in the cognitive
control regions and projected onto the space of concepts over
the course of the search process.
• Itinerant search within the ESD: Once the ESD is selected, ideas
emerge from the rapid dynamics of the activity in the ESD
as groups of co-active concepts that persist temporarily as
resonant metastable patterns, and dissolve. If the ESD is dense
in good ideas, the search is much more effective than if it had
occurred over the entire semantic space.
Thus, ideas are generated by the interaction of attractor
dynamics at two spatial and temporal scales — the coarser, slower
scale for adapting the ESD, and the finer, faster scale for the
itinerant attractor dynamics within the ESD, which can be seen as
forming a high-dimensional continuous attractor (Wu,Hamaguchi,
& Amari, 2008) or invariant subspace for conceptual dynamics. The
overall effectiveness of the search process depends on configuring
a productive ESD and on generating good search trajectorieswithin
it. Three sources of information shape the search process at both
levels:

• Associative and inferred relationships among semantic units
(e.g., concepts) encountered during previous experience in
specific contexts. These are represented by synaptic weights.
• Similarity between the given context and previously known
contexts.
• Real-time evaluative feedback on the generated ideas from the
critic, modulating the search dynamics through reward signals.

These types of information interact with inherently stochastic
activity in the system, resulting in a search that, while broad
and stochastic, has a strongly directed systematic component.
From a theoretical perspective, themodel conceptualizes the brain
as a dynamical system with emergent coordination among its
components at multiple spatiotemporal scales (Bressler & Kelso,
2001; Freeman, 2000; Singer et al., 1997; Tononi, Edelman, &
Sporns, 1998). It belongs to the broad class of neurodynamical
models characterized by a combination of resonance (Carpenter
& Grossberg, 1987; Carpenter, Martens, & Ogas, 2005) and
metastability (Freeman, 2000; Tsuda, 2001), where the requisite
coordination arises from the circulation of information within
interacting networks relaxing towards – but never completely
finding – equilibrium.

3.1. System architecture

The connectivity of the system discussed in this section is a
partial implementation of the large model in Fig. 1. It is shown
in Fig. 2 with the IGS and the critic delineated. The critic is
currently implemented as a rule-based oracle simulating both
internal evaluation and feedback from the environment or a
human evaluator in an actual ideation scenario. The IGS is a
multi-layer connectionist network configured using a database (or
training set) of contexts and relevant ideas from these contexts.
After configuration, the system is required to do the following:

• Recall: Automatically recall familiar ideas in familiar contexts.
• Context-specific generalization over idea space: Generate relevant
new ideas in familiar contexts.
• Generalization over contexts: Search efficiently for good ideas in
unfamiliar contexts within the system’s knowledge domain.
• Learning: Incorporate new contexts and ideas into the system’s
structure so that they become familiar over time.

3.1.1. The Idea Generation Sub-system (IGS)
The IGS is a multiply recurrent connectionist system that

embeds semantic knowledge, and is driven by an external context
input specifying the task or problem at hand.
The context input, X = {xi}, is encoded through Nx binary

bits grouped together into two subsets: (1) The type bits indicate
the type or domain of the context, e.g., eating, vacation, shopping,
etc.; (2) The attribute bits encode the descriptive attributes of the
context, e.g., inexpensive, exciting, short, etc. In any given context,
only one type bit is set to 1, but any number of attribute bits can be
set to 1. Opposite or mutually exclusive attributes are encoded by
separate bits (Verguts et al., 2004). This representation allows the
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Fig. 2. Architecture of the multi-level model, showing the Idea Generation Sub-
system (IGS) and the critic. Inter-layer connections are shown only for a single
concept unit for clarity. Other concept units are connected to feature and category
units in a similar way (see text for details). The large ovals in the DSN are modules,
with circles indicating selector units. The architecture and connections of the DSN
are only shown schematically. The interneurons modulating learning (shown in
Fig. 3) are not shown here for clarity. All connections shown without arrows are
bi-directional, though their strengths are not necessarily the same in each direction.

similarity between different contexts to be represented naturally
by Hamming distance.
The fundamental semantic elements of the IGS are concepts

(corresponding to nouns and verbs), encoded by concept units
in the Concept Network (CN). Each concept maps onto a set of
features, which are represented by feature units in the Feature
Layer (FL). Concepts that are similar on specific subsets of features
are grouped together into non-exclusive categories represented
by selector units in the Dynamic Selection Network (DSN), which
provides the selective bias to configure the EDS, thus implementing
the functions of internal attention andworkingmemory (Dehaene,
Kerszberg, & Changeux, 1998; Durstewitz et al., 2000; Fuster, 2000;
Goldman-Rakic, 1995; Houk, 2005; Newman & Grace, 1999).
The Nc concept units in the CN provide amodal representations

of concepts, and are connected recurrently based on their joint
participation in known good ideas (see below). Each concept
also has a distributed feature representation with Nf features
divided into two subsets: (a) A set F T of NTf type features
denoting functional types for concepts, e.g., ‘‘accommodation’’,
‘‘food’’, ‘‘mode of transportation’’, etc.; and (b) a set FD of
NDf descriptive features denoting attributes such as ‘‘expensive’’,
‘‘large’’, ‘‘strenuous’’, ‘‘red’’, etc., with distinct elements for opposite
or mutually exclusive descriptive features (Verguts et al., 2004).
The type features are binary, indicating whether a concept is of a
certain functional type, while descriptive features are real-valued,
indicating the degree to which the features hold for a concept.
Thus, the feature representation for concept i is given by Φi =
{ΦTi Φ

D
i }, where Φ

T
i = {φ

T
ij } ∈ {0, 1}

NTf and ΦDi = {φ
D
ij } ∈ RND are

the vectors of values taken for the concept by type and descriptive
features, respectively. Most concepts are associated with only one
type feature. The spanning subspace for concept i is defined as
Ψi = {j ∈ FDt | φDij > 0.5}, while the spanning subspace for
all concepts of type k is given by Ψ (k) =

⋃
i|φTik=1

Ψi. There is a
feature unit in the FL for each feature, giving Nf units divided into
NTf type feature units and N
D
f descriptive feature units. Concept unit

i and feature unit j are connected by reciprocal connections with
weightswcfij = w

fc
ij = φ

�

ij , where � denotes t or d.
The Ns selector units of the DSN are organized intoMs modules

called templates. Each selector unit, i, is tuned to a set of features,
Ξi = {f ti ; f

d
i1
, f di2 , . . . , f

d
iq }, where the first element is a type feature

and the rest are descriptive features, and q is a small positive
integer. The set of features Ξi is termed the focus set for selector
unit i, which groups together all concepts of type f ti that have
sufficiently high values of f di1 , f

d
i2
, . . . , f diq , e.g., ‘‘cheap, fast, long-

distance transport’’ or ‘‘expensive, urban accommodation’’. The set
of concepts covered by selector unit i is termed its member set
and denoted Γi. For convenience, we term the semantic entity
represented by selector unit i as its associated category. There
are several identically tuned selector units in the DSN for each
category, but never in the same module. Each module groups ma
selector units of distinct types (i.e., with distinct type features) into
a densely connected local network.
Each selector unit, i has four sets of connections: Reciprocal bi-

nary gating connections with all concept units, j in Γi, binary con-
nections,wsfij from the feature units, j ∈ Ξi, real-valued modifiable
associative connections, wsxij from the context bits, j ∈ X , and ini-
tially weak real-valued connections,wssij , from other selector units,
j ∈ DSN , that are modified both during initial learning and during
search (see below).
The context bits and selector units can be seen as representing

the highly cue-, feature- and context-selective cell assemblies
in the prefrontal cortex (Constantinidis, Franowicz, & Goldman-
Rakic, 2001; Fuster, 2000; Goldman-Rakic, 1995) and the basal
ganglia (Graybiel, 1995).
Initial configuration of the IGS:
Configuration of the IGS begins with a given set of concepts –

the concept vocabulary – already defined in terms of a given set of
features comprising the feature set. These are currently developed
manually, though work is underway to automate this process.
The system is trained using a training set, which includes a set of
contexts, G = G1, . . . ,Gm, and a set of νu relevant ideas, Juk for each
context Gu. Each Juk is encoded as a Nc-bit binary vector indicating
the concepts comprising it.
The purpose of initial configuration is to embed the semantic

information in the training set. It is done in two stages as follows:
Stage I: During this stage, the given set of concepts and features
is used in conjunction with the training set of ideas to obtain
a diverse repertoire of categories and templates. The concepts
corresponding to a particular type are considered together and
clustered in the spanning subspace for the type. The clusters
identified are then checked against the ideas in the training set to
see if they are disproportionately associated with certain contexts,
and clusters that do so are used as seed categories. Any concepts
not included in a cluster are given their own singleton clusters.
More clusters are then generated heuristically by taking subspaces
of the selected clusters. Once the categories are defined, a large
number of selector units are created with multiple instances
of each category, and grouped together randomly into incipient
modules, making sure that multiple categories of the same type
are not included in the same module.
Stage II: In this stage, the sub-systemcomprising the concept units,
the selector units and the context input is trained on the ideas
in the training set using neural learning methods. Feature units
are excluded from the learning process during this stage. Learning
occurs at two levels:
Learning in the DSN: The ideas in the training set are projected onto
the selector units in random order through the concept network
while the corresponding context pattern is clamped on the context
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Fig. 3. Learning in the DSN: Synaptic modification for all connections is
modulated nonlinearly by the total activity of the module, ensuring that highly
activated modules learn disproportionately more. This figure shows two modules
corresponding to those shown in the DSN in Fig. 2. Arrows indicate information
signals while T-endings denote connections modulating the learning rate. The
bolder modulatory signal for the left module indicates that its neurons undergo
greater synaptic modification because the module is more active than the module
on the right.

inputs. Each idea is presented to the system for several consecutive
steps called a presentation cycle. At the start of a presentation cycle,
the selector units’ activity is determined completely by the training
idea input. The network is then allowed to relax based on the
recurrent connectivity of the DSN, but with no influence from the
context input. Neural firing at this time is competitive, with the Ks
most excited units allowed to fire. The resulting activity pattern
at the end of the learning cycle is embedded auto-associatively
into the network by the Hebbian rule: wssij (t + 1) = wssij (t) +
ηss(t)zsj (t)z

s
i (t)(1 − w

ss
ij (t)). It is also associated with the context

input pattern using a presynaptically-gated Hebbian rule:wsxij (t +
1) = wsxij (t) + ηsx(t)xj(t)[z

s
i (t) − w

sx
ij (t)], where t indexes the

presentation cycle, xj is the activity of the jth context bit and
zsi that of the ith selector unit. The learning rates for the two
associations (which can be different) are modulated nonlinearly
by the activity of the module to which the postsynaptic unit
belongs: η(t) = ηfixedS[

∑
k z
s
k(t)], where k indexes all units in

the module for unit i, ηfixed is a fixed number between 0 and 1,
and S[.] is a highly nonlinear sigmoid function. This is modeled
asmodulatory feedback through amodule-specific interneuron, as
shown in Fig. 3. This soft-competitive learning at the module level
ensures that highly active modules learn much more than those
with low activity, establishing a preferential link between contexts
and ideas that are appropriate in those contexts.
Initially, all the recurrent weights in the DSN are low, but as

they change with learning, they play an increasing role in the
process. Ultimately, each context becomes associatedwith a graded
attractor comprising a strongly connected core and an increasingly
weakly connected periphery of selector units. The strength of
association between units of the attractor associated with each
context depends on the frequency of their participation in ideas for
that context.When a context is presented during recall, it activates
its associated attractor from the core outward, depending on the
level of lateral inhibition in the DSN.
Learning in the Concept Network: The concept network is configured
concurrently with the DSN, using the ideas from the training set.
As each idea is presented, the recurrent connections between the
concept units it activates are modified auto-associatively to give
wccij ∼ P[z

c
i (t) = 1, z

c
j (t) = 1], producing preferentially linked
concept groups representing pieces of viable ideas over all trained
contexts. Someof these groups are explicitly present in the training
ideas while others arise emergently as the system is trained.
IGS unit activities
The units in the three components of the IGS function as

follows:
Concept units: The net synaptic input to concept unit i is given by:

yci (t) =
∨
j|i∈Γj

zsj (t)

[
γ cf

∑
j∈FL

w
cf
ij z
f
j (t − 1)+ γ

cc
∑
j∈CN

wccij z
c
j (t − 1)

+ γ cnoiseηi(t)

]
(1)

where the outputs from units in the CN, the FL and the DSN are
denoted by zcj , z

f
j and z

s
j , respectively, w

cf
ij are binary weights to

concept unit i from feature units, and wccij are weights from other
concept units, j, ηi(t) is uniform white noise between 0 and 1, and
γ cs, γ cc , and γ cnoise are fixed gain parameters.
The state of concept unit i at time t is given by:

uci (t) = (1− α
c)uci (t − 1)+ α

cyci (t); 0 < αc < 1. (2)

Activity in the CN is competitive, so that the Kc non-refractory
units with the highest uc(t) > 0 can fire at time t . Once fired,
unit i may remain active for a random activity duration ϕ ∼
U[ϕcmin, ϕ

c
max] if u

c
i (t) remains sufficiently high. After that, i enters

a refractory period of random duration ρ ∼ U[ρcmin, ρ
c
max]. The set

of Kc co-active units at any time comprise an idea, but the idea
is recognized by the system only if it persists for τA successive
time steps, termed the awareness threshold. Since only co-active
concepts with strong mutual weights can persist in the face of
competition and theweights depend on the joint utility of concepts
in prior ideas, most ideas that reach awareness comprise concepts
that ‘‘make sense’’ together. The gating from the DSN ensures that
only concepts belonging to the member set of an active selector
unit are eligible for activity, which defines the current ESD. Finally,
disynaptic recurrent input via the FL allows active concepts to bias
successor concepts similar to the currently active ones, making it
possible to generate analogous ideas successively.
Feature units: Feature unit i receives input only from concept
units: ui =

∑
j∈CN w

fc
ij z
c
j , and has output z

f
i = 1 if ui > 0.5 and

0 else. Thus, if the current idea has sufficient support for a feature,
it is active.
Selector units: Selector units use a model similar to the concept
units. The net synaptic input to selector unit i is given by:

ysi (t) = γ
sx(t)

∑
j∈X

wsxij xj(t)+ γ
ss(t)

∑
j∈DSN

wssij (t)z
s
j (t − 1)

+ γ sf (t)
∑
j∈FN

w
sf
ij z
f
j (t − 1)+ γ

sc(t)
∑
j∈CN

wscij z
c
j (t − 1)

+ γ snoiseηi(t) (3)

where xj are context bits, η is uniform white noise, γ sx, γ sc , γ ss,
and γ snoise are time-dependent gain parameters, and the remaining
items are as defined earlier. Note that the recurrent weights in the
DSN are modified during the search process, as discussed below.
The state of selector unit, i at time t is given by:

usi (t) = (1− α
s)usi (t − 1)+ α

sysi (t); 0 < αs < 1 (4)

where αs � αc , ensuring that the DSN activity changes much
more slowly than CN activity, as required for working memory
functionality (Durstewitz et al., 2000). As in the CN, selector units
fire competitively, with the Ks(t) non-refractory units with the
highest us(t) > 0 activated at time t . Like concept units, selector



L.R. Iyer et al. / Neural Networks 22 (2009) 674–686 679
units also have random activity duration, ϕ ∼ U[ϕsmin, ϕ
s
max] and

refractory period, ρ ∼ U[ρsmin, ρ
s
max], both of which are much

longer than for concept units.
A key feature of the DSN is modulation of the competitive

inhibition, Is(t), which determines Ks(t), so that different numbers
of selector units can be active at different times (see below for
details).
IGS dynamics: The FL in the current model does not have any
intrinsic dynamics, and serves mainly as an intermediate layer
providing disynaptic linkage for CN units and DSN units. The DSN
has slowly itinerant attractor dynamics biased by the context input
and with varying activity levels determined by the modulated
inhibition. Finally, the CN has faster itinerant attractor dynamics
confined to the current ESD, with small groups of concepts coming
on, either persisting as ideas (if mutually compatible) or fading
away quickly.

3.1.2. The critic
While familiar contexts are expected to yield good ideas

automatically, effortful search (Dehaene et al., 1998) is needed to
find a productive ESD in unfamiliar contexts. The critic mediates
this process by providing evaluative feedback on the generated
ideas. This, in turn, modulates competitive inhibition on the
selector units and drives the search process as discussed in the next
section.
In the current model, the critic is implemented as a self-

consistent rule-based system with extensive domain knowledge.
This models the internal evaluative processes hypothesized to
reside in the basal ganglia (Graybiel, 1995; Houk, 2005), the
anterior cingulate cortex (ACC) (Botvinick, Cohen, & Carter, 2004),
the orbitofrontal cortex (OFC) (Bechara, Damasio, & Damasio,
2000), etc., as well as external evaluation from the environment.
The idea generation system’s performance is judged by howwell it
can infer the preferences of this critic based only on reinforcement
feedback for the ideas the system generates — over both familiar
contexts (those used in training) and unfamiliar ones.
As the system generates ideas, the critic evaluates them based

on five criteria:

Admissibility, A, is the fraction of required concept types
included in the idea.
Coherence, C , is 1 if the concepts in the idea are compatible, 0
else.
Quality Q , is a function of the fraction of quality features
included in the idea, and their strength. Quality features are
defined in the critic.
NoveltyN , is 0 if the idea occurs in the training set; 0.2 if the idea
shares three concepts with a training set idea; 0.7 if it shares
two; and 1 if it shares one or none.
Efficiency, E = 1 − R, where redundancy, R, is the
fraction of concepts in the idea that are unnecessary, e.g., a
vacation context requires a place to stay, but not more than
one. However, multiple activities on a vacation may not be
redundant.

Two evaluative signals are generated for each idea as follows.
A reward value, r , is calculated as: r = AC(aQ + (1 − a)N),
where parameter a indicates the relative importance of quality and
novelty. Also, an adjusted reward rc , is computed as follows: (1) If
Q > 0.8 and E > 0.6, rc = r; (2) If Q ≤ 0.8 and E = 1, rc = r; and
(3) Else, rc = 0. Their use is discussed in the next section.

3.2. Idea search dynamics

After the system is configured, it is tested by giving it both
familiar and unfamiliar contexts as input. The unfamiliar contexts
differ from familiar ones in their features, but still use the same
feature space.
To start off, the top-down gains, γ sx and γ fc , are high while

the other connections are relatively ineffective. This causes
the external context to activate the DSN, which biases the
concept network to define an initial ESD. As ideas are generated
andevaluated, a satisfaction level, ρ(t), is calculated as: ρ(t) =
ρ(t − 1)+1ρ(t), with

1ρ(t) = H[r(t)](1− ρ(t − 1))r(t)− (1− H[r(t)])βρ(t − 1) (5)

where H[ . ] is the Heaviside step function.
The search dynamics emerges from the interaction of the

natural IGS dynamics described earlier with three modulatory
processes driven by evaluative feedback from the critic. Each of
these is described next.
(a)Modulation of DSN inhibition:During the search process, if

the satisfaction level, ρ(t) is low, the inhibition Is(t) is lowered to
expand the ESD by recruiting a larger set of active selector units
corresponding to the periphery of the attractor activated by the
context, and when ρ(t) increases, the ESD is narrowed again by
increasing Is(t). The value of ρ(t) is checked every Ts time steps
(Ts = 500 in the simulations below), and Is is changed as Is(t+1) =
Is(t)+1Is(t), with:

1Is(t) =
{
ε(ρ(t)−min(Is(t), ρ(t))), if ρ(t) ≥ ω
−δI if ρ(t) < ω

(6)

where ω ∈ (0, 1) is a frustration threshold, and ε, δI ∈ (0, 1) are
increment and decrement parameters. The activity level in theDSN
is then changed as Ks(t + 1) = Ks(t)+1Ks(t), where:

1Ks(t) =
{
−min

[
dδ−K 1I

s(t)e, Ks(t)− Kmins
]
, if ρ(t) ≥ ω

δ+K if ρ(t) < ω
(7)

where δ−K and δ
+

K are integers, and K
min
s is a minimum activity level

for the DSN. The new levels of Ks and Is then remain unchanged for
the next Ts time steps.
(b) Modulation of gains: Initially, the top-down gains, γ sx and

γ fc , are high while the other connections are relatively ineffective.
However, the bottom-up gains, γ sc , γ cf and γ sf are modulated in
synchrony with Ks. Thus, as the search gets more relaxed without
sufficient reward, influence from the internal structure of the
system – encoding previously inferred semantic relationships –
increases.
(c) Modification of DSN weights: Whenever an idea is re-

warded, i.e., r(t) > 0, the connections between active se-
lector units associated with its constituent concepts have the
connections between thempotentiated temporarily. This is awork-
ing memory effect that may usemechanisms such as those recently
hypothesized by Mongillo, Barak, and Tsodyks (2008) correspond-
ing to dopamine-mediated increase in the excitability of the se-
lector units (Apicella, 2007; Durstewitz, Kelc, & Güntürkün, 1999;
Schultz, 2000) due to the reward signal.
The interplay between effects (a) and (c) above is crucial. The

initial activity pattern in the DSN (and therefore, the initial ESD
in the CN) is based on the similarity of the given context with
previously known ones. If that does not yield good ideas, i.e., high
ρ(t), lowered Is causes the DSN activity pattern – and therefore the
ESD – to expand in a way that is based on the prior connectivity of
the DSN, i.e., the semantic knowledge embedded during training.
Eventually, this begins to yield good ideas, but with low efficiency
because the ESD is much broader than it needs to be. However, the
specific reward-dependent modification of DSN weights ensures
that when the activity level in the DSN contracts again due to
increased ρ(t) and Is, the units that survive are likelier to be the
ones actually responsible for the recent rewards. Going back and
forth over the expansion–contraction cycle has a ratchet-like (or
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Fig. 4. Reward and Novelty time series for two familiar contexts: (Romantic vacation and Adventurous vacation). Both quantities are between 0 and 1, but Novelty is shown
pointing downwards to allow plotting both quantities on the same graph, making it possible to assess the overall quality and novelty of each idea. Only rewards for unique
ideas are shown. See text for discussion.
annealing-like) effect, leading to the configuration of better and
better ESDs. This effect is illustrated in Fig. 6 later in this paper.
The increased potentiation in the DSN due to effect (c) is

temporary, as working memory should be. but it leaves behind
a residual effect that, over several runs, slowly reconfiguring the
DSN to embed information about the novel contexts it encounters.
Also, the recurrent weights between active concept units are
potentiated slightly during the search process whenever the
adjusted reward, rc(t) > 0, i.e., when a rewarded idea is
sufficiently good and efficient. These concepts are thus more likely
to be co-active in the future. Over time, this modifies the joint
utility-based connectivity of the concept layer.

3.3. Simulation results and discussion

The model described above has been instantiated using a
training set based on 5 contexts, 108 concepts and 1000 training
ideas. All contexts were drawn from the general domain of outings
and vacations, and are: (1) School field trip; (2) Guys’ day out;
(3) Romantic vacation; (4) Adventurous vacation; and (5) Winter
vacation. The system has 560 selector units grouped into 140
modules of 4 units each. Typical concepts include five-star
hotel,skiing,hitch-hiking,art museum, etc., while typical
categories include expensive accommodation, romantic
activity, etc.
After configuration, the system was tested by running it for

the 5 familiar contexts, one unfamiliar context (Nature-related
vacation) similar to the familiar ones, and one highly novel
context (Physically active outing). In each case, the system was
allowed to run for 3000 time steps, and the ideas generated were
evaluated on all five metrics listed above. The composite reward,
r , captures the results, and Fig. 4 plots the reward and novelty
time-series for two familiar contexts using a = 0.8. Thus, ideas
are rewarded mostly for quality, but with a significant component
for novelty. Only rewards for unique ideas are shown. As can be
seen, the system was able to generate good ideas rapidly for the
familiar contexts, but most of the initial ideas were not novel,
i.e., the system worked mainly through exploitation of embedded
knowledge. This corresponds to the so-called automatic response
generation (Dehaene et al., 1998). Once exploitable ideas were
exhausted, the search moved on to more novel good ideas, which
were found — more so for the first context than the second. This
shows that the system can generalize to novel ideas within a
familiar context, but only after first exploiting known ones.
Fig. 5 is analogous to Fig. 4, but this time for the two novel

contexts. For the slightly novel context (top panel), the results
are similar to those for familiar ones, albeit less productive —
as is to be expected. The search first exploits what it can before
exploring for more novel ideas. It finds many novel ideas, but
none of them is especially good. For the highly novel context, in
contrast, exploitation fails utterly, forcing the system to explore
by expanding the search until it begins to discover good ideas.
When they are found, they are highly novel, as they are expected
to be in a highly novel context. Fig. 6 shows a more detailed
view of the search in the highly novel context over a longer
duration. Beginning with only 3 active selector units, insufficient
reward causes the search to expand until step 1500. At that
point, the search suddenly begins finding good ideas, indicating
that the correct set of categories is now included in the active
group. This leads to an increase in inhibition and exploration of
several category combinations at that level. However, the flow of
good ideas dries up by step 2600, causing inhibition to go down
again until good ideas reappear after step 3500. This time, when
inhibition goes up, at step 4000, it captures a sparse set of highly
productive categories. The process of ratcheting expansion and
contraction of DSN activity was thus able to discover an efficient
ESD for the context.
Upon closer analysis of the results in Fig. 6, it turned out that

the search had discovered that, for this context (Physically active
outing), the critic was perfectly satisfied with a combinations of
concepts from two categories: Sporting activities and Kids’ fun
and games, and there was no need to include accommodations
or long-distance transport. Thus, an idea such as jet-skiing,
skateboarding, beach volleyball, hula-hooping sco-
red fairly high. In contrast, the other unfamiliar context, Nature-
related vacation, required both transport and accommodation,
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and a typical good idea was air-travel, 5-star hotel,
kayaking, canoeing. Neither of these ideas – or these contexts
– were part of the training set. These results demonstrate that
the system can generalize to novel contexts in an appropriate
way, exploit existing knowledge even in these novel contexts (if
possible), and can also find completely novel ideaswhennecessary.

4. The conceptual dynamics model

As a complement to the work described in the previous sec-
tion, we used an architecturally simpler continuous-timemodel of
abstract conceptual dynamics alone to explore how priming cat-
egories with high- or low-accessibility affects the generation of
ideas. This model can be seen as combining the functionality of the
concept and dynamic selection networks into a modular oscillator
network. Themodel is inspired by the theory of semantic networks
(Mednick, 1962) and the modular organization of the cortex with
long range excitatory connections and local inhibition (Constan-
tinidis et al., 2001; Goldman-Rakic, 1995; Mountcastle, 1997).
This model retains the essential features of the more detailed

model above: (1) Ideas are represented explicitly as combinations
of individual concepts grouped together into categories; (2) Ideas
are generated through a dynamic, adaptive neural system using
biologically inspired mechanisms; (3) Useful, novel ideas are gen-
erated as conceptual combinations from one or more categories;
and (4) The dynamics of idea generation is determined by: (a) the
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connectivity pattern and strength of existing semantic relations
between concepts, (b) the sequence of previously generated ideas,
and (c) inhibitory modulation of activity controlling the semantic
distance between co-active concepts.
The system consists of a single layer of Nc interconnected

concept units representing single concepts. Each concept unit is
a neural oscillator comprising a coupled pair of elements, one
excitatory and one inhibitory, each of which can be seen as
populations or assemblies of neurons. The ith excitatory and
inhibitory units follow the equations:

1
τE

dEi(t)
dt

= −Ei(t)+ f

(
aiEi(t)+ γE

Nc∑
j=1,j6=i

wij(t)Ej(t)

− biIi(t)− γI Iglobal(t)+ Si(t)+ ηi(t)

)
(8)

1
τI
dIi(t)/dt = −Ii(t)+ f (ciEi(t)) (9)

where Ei and Ii are, respectively, the levels of activity in the ith
excitatory and inhibitory units, τE and τI are time constants, wij is
the strength of the connection from excitatory unit j to excitatory
unit i, ai, bi and ci are the strengths of self-excitation, cross-
inhibition and cross-excitation, respectively, in the ith oscillator,
Si(t) is an external, excitatory input, ηi is Gaussian noise, Iglobal
is a global inhibitory input, representing lateral inhibition and
defined as: Iglobal =

∑Nc
j=1 Ej(t), and γE , γI are, respectively, the

excitatory and inhibitory gains. The activation function f ( ) is the
sigmoid f (x) = 1/(1 + exp(−%�(x − ϑ�))), where %� and ϑ�
control the sigmoid’s shape and � is E or I (the parameters have
different values for the excitatory and inhibitory units.) This model
is similar to Wilson and Cowan’s model of interacting excitatory
and inhibitory neural populations (Wilson & Cowan, 1972). The
values chosen here are such that a concept unit exhibits limit cycle
oscillations for a range of non-zero external input values and stable
fixed point behavior for smaller or larger values. All parameters are
the same for all concept units, except ai, bi and ci for which a small
random deviation around the fixed value is added.
Since this model is abstract (i.e., not based on linguistic ele-

ments), categories are encoded implicitly by the pattern of
connectivity between concept units. The connection from concept
j to concept i is a measure of how often the two concepts are
active together in a good idea compared with the number of times
j is active alone. This induces an inhomogeneous connectivity
structure that makes specific categories more or less accessible
from others. Given the currently active category, the remaining
categories can be assigned to subsets comprising those with low,
medium and high accessibility (see below).
The dynamics of the model, given a transient initial activation

within one category, depends on the balance between inter-
concept excitation and inhibition (γE andγI ) and is as follows:With
no global inhibition (γI = 0) and with γE larger than a threshold,
all concept units become active and stay active; lowering the
inter-concept excitation causes the system to exhibit synchronized
oscillations,while lowering γE causes the activity to die out further.
When the global inhibition is non-zero andhigher than a threshold,
the dynamics is more interesting. The activity remains confined to
a small number of concepts, and switches from one set of active
concepts to another (i.e. from one idea to another) itinerantly. The
small, non-zeromean Gaussian noise added to each excitatory unit
ensures that the activity does not die out.
The model has short-term dynamic connection strengths bet-

ween different excitatory units: Connections between concepts
active at small positive time differences slowly decay to 0 with
a time constant τd, while all weights lower than the fixed, initial
3 6
20

22

24

26

28

30

32

34

36

38

40

Number of Primes

N
um

be
r 

of
 U

ni
qu

e 
Id

ea
s 

G
en

er
at

ed

Fig. 7. Number of ideas generated as a function of number and accessibility of
primes. Priming low-accessible categories (solid circles) produced more unique
ideas than priming high-accessible categories (solid squares). The solid triangles
indicate the control (no priming) case. Data are re-plotted from Leggett (1997).

value – the steady state value – go back up with a time constant
τr . This depletion-and-recovery dynamics has an inhibitory short-
term effect that lowers the likelihood of ideas being repeated over
short time spans. It corresponds to slowly lowering the probability
of staying in the same category while generating ideas from it. This
is also a feature of the associative model of Brown et al. (1998). In
contrast, the SIAM model (Nijstad & Stroebe, 2006) increases the
likelihood of repeating ideas. The ratio between τr and τd controls
the speed with which connections between concepts in previously
active ideas go down and up.
Ideas are represented by the activity of excitatory units: all units

with an activity over a threshold θon at time t comprise an idea. The
novelty of an idea is judged by whether its component concepts
were already strongly connected (indicating prior co-activation).
More novel ideas are likely to be spread over concepts inmore than
one category.

4.1. Modeling the effect of category priming

Experimental results (Coskun et al., 2000; Dugosh & Paulus,
2005; Dugosh et al., 2000; Nijstad et al., 2002) show that providing
primes in the form of relevant ideas or category labels can have a
positive effect on brainstorming performance. Memory represen-
tations differ in the strength of their associations with each other
in an individual’s semantic network, allowing some to be accessed
more readily than others. From a brainstorming perspective, this
means that some ideas may be difficult for an individual to gener-
ate, but may become more accessible when activated by priming
input. Thus, category accessibility is an important factor in under-
standing brainstorming performance (Brown et al., 1998).
To study the effects of external priming, Leggett (1997) pro-

vided individual brainstormers with ideas from high frequency
categories which individuals use to generate most of their ideas
and from low frequency categories that are used less often. A
high frequency category is considered more accessible than a low
frequency one. Leggett (1997) also primed individuals with either
a high or low number of exemplars from each category. A high
number of primes indeed resulted in more non-repetitive ideas
compared to a lownumber of primes or to the control casewhenno
primeswere presented, and primes from low-accessible categories
led to the production of more unique ideas than the same number
of primes fromhigh-accessible categories, as shown in Fig. 7. These
results are reproduced by simulations of the model (see Fig. 10).
The neural model described above was used to study: (1) The

effect ofpriming low-accessible categories versus high-accessible
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Fig. 8. Performance of the model for primes from high-accessible categories. The figure shows the activity of excitatory units over time in each category, beginning with a
high-accessible category. Plots numbered 1–4 represent low-accessible categories, 5–8medium-accessible categories and 9–12 high-accessible categories. The results show
that activity is confined mainly to high-accessible categories.
categories during ideation, and (2) The effect of priming with a
low number versus a high number of hints during a brainstorming
session. Here, the Nc concept units are divided equally into Nq
categories, with no overlap. Also, the Nq categories are divided
equally into three sets: low-, medium- and high-accessible
categories. We interpret the accessibility of a category as directly
related to the number of incoming connections from other
categories. To avoid the effect of connectivity versus overlap
between concepts, the overlap between concepts in different
categories is set to zero in the current version of the model. All
connections are chosen randomly, with the same probability of
connecting two concepts in one category, independent of category
type, while connections between concepts in different categories
have distinct probabilities: lower if the destination concept is
from a low-accessible category, and appropriately higher if it is
from a medium- or high-accessible category. Also, all connection
strengths come from one of two Gaussian distributions, both
with the same variance, but one with a larger mean (i.e. strong
connections) and anotherwith lowermean (i.e.weak connections).
The choice of random connections between concepts was made
to serve as a baseline case. The current model is purely abstract,
with its structure reflecting the hypothesized structure of semantic
representations in the brain. In the future, we plan to simulate the
model with more realistic connectivity patterns similar to those
observed in semantic networks (Steyvers & Tenenbaum, 2005).
The model simulated here has Nq = 12 categories, each

with Nc = 25 unique concepts. The first four are designated
low-accessible, the middle four medium-accessible and last four
high-accessible categories. They differ by the probability of an
incoming connection from another category: for low-accessible
categories, this value is 0.005, for medium-accessible ones, 0.015
and for high-accessible ones, 0.03. The intra-category probability
of connection is the same for all categories and is 0.3. For non-zero
connections between concepts in the same category, the strong
ones (i.e. Gaussian mean 0.6 and variance 0.04) are selected with
probability 0.6, while the rest have mean 0.3 and variance 0.04.
Non-zero connections between concepts in different categories
have a probability of 0.4 to be strong (mean = 0.6, variance =
0.04), while the rest are weak (mean = 0.1, variance 0.04).
The mean values of the coupling parameters for a concept unit,
i, are: ai = 1, bi = 1, ci = 2, with a standard deviation of
0.01. The time constants are: τE = 0.4, τI = 2. The parameters
of the sigmoidal activation function are: %E = 12, ϑE = 0.3 for
excitatory units and %I = 18, ϑI = 0.65 for inhibitory units.
Other parameters are: γE = 0.14, γI = 0.05, noise ∼ N(0.1, 0.1).
Themodel equations were simulated with Runge–Kutta numerical
integration using a constant integration step of 0.01.
Ideas were extracted from the activity of the excitatory units

(Ei(t)) as follows: The active concept units were determined at
each time step as those with Ei(t) greater than a threshold (0.7).
If the set of active concepts were different from the previous set in
one or more bits, it was recorded as an idea.
Simulations with the model showed that low-accessible

categories are indeed harder to reach, unless primed. Fig. 8 shows
the activity of excitatory units in all 12 categories when the
initial state is already in a high-accessible category (top third of
the graph). There were four prime presentations placed at equal
intervals during the simulation. A prime was encoded as the
activation of either 3 (low number of primes) or 6 (high-number of
primes) excitatory units chosen randomly from a high-accessible
category. It can be seen that bumps of activity are spread mostly
over the high-accessible categories, due to their higher-number
of incoming connections and the priming of these categories.
The activity rarely spreads to the middle and low thirds of the
graph corresponding to medium- and low-accessible categories,
respectively. Thus, the model reproduces the same behavior as
seen in experiments for high- and low-accessible categories: high-
accessible categories are sampled more frequently than low-
accessible ones.
Fig. 9 illustrates the activity of excitatory units when low-

accessible categories are primed. The primes are chosen as in the
experiment for Fig. 8, but from low-acessible categories. In contrast
to Fig. 8, low-accessible categories are now also activated, and
there is an overall increase in the total number of unique ideas.
Together, Figs. 8 and 9 simulate all four priming contingencies:
high-/low-accessibility categories in combinationwith low or high
number of primes. The control case was also simulated (not
shown).
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Fig. 9. Modeling the effect of low-accessible primes. The figure shows the activity of excitatory units over time in each category. Plots numbered 1–4 represent low-accessible
categories, 5–8 medium-accessible categories and 9–12 high-accessible categories. Concepts from all categories are now activated (see text).
Fig. 10 shows the number of unique or non-repetitive ideas
in all five conditions: low/high number of primes, low-/high-
accessible categories and the control condition, when no primes
where presented. In this last case, the activity starts from a small
background noise. Results show that more primes increase the
number of unique ideas, independent of the type, and that primes
from low-accessible categories are more stimulating than those
from high-accessible categories. These results were also predicted
by the Brown et al. (1998) associative memory model and are
qualitatively consistent with the experimental results shown in
Fig. 7 (Leggett, 1997).

5. Biological connections and future directions

We have constructed a neural network model of the creative
process and begun to simulate behavioral data on brainstorming.
The model provides a framework that is amenable to further
extension in several directions. For example, it can be applied
to explaining other behavioral data showing beneficial effects
of breaks on the number and diversity of ideas generated in a
brainstorming session (Paulus et al., 2006). So far, we have drawn
some rough analogies between key components of the model
and various interconnected brain regions, as shown in Fig. 1.
This provisional mapping can be refined through fMRI studies of
brainstorming paradigms.
The critic in the network of Fig. 2 rates potential ideas on five

different criteria: quality, admissibility, coherence, novelty, and
efficiency (Iyer et al., 2009). The last four of these criteria are largely
intrinsic properties of the ideas and the tasks for which the ideas
are intended. The quality criterion is more subjective and can be
influenced by social and affective inputs as well as by cognitive
priming. The influences on quality are subserved by inputs to the
basal ganglia (or the internal critic) from other brain systems,
including the amygdala (emotional salience), hippocampus (task
relevance), and prefrontal cortex (plans) (Newman & Grace, 1999).
Such influences on this gating can be utilized to extend the
model to account for differences in idea generation between
individuals acting alone and the same individuals in groups. Social
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Fig. 10. Number of unique ideas generated by the model under different priming
conditions. A low number of primes or a high number of primes are presented four
times during the simulation at equal intervals from either low-accessible categories
(circles) or high-accessible categories (pluses). The no priming case is shown by
the flat curve at the bottom (asterisks). The simulation matches the experimental
results in Fig. 7.

psychologists have long noted that interactive brainstorming
groups, in the absence of interventions such as priming or hints,
tend to produce fewer ideas than the same individuals acting
alone (see Paulus and Brown (2003) for review). This productivity
loss in groups has been explained both by cognitive factors
such as attentional interference and by emotional factors such
as each individual’s apprehension about the evaluation of their
ideas by others in the group. Attentional interference can be
modeled by mutual inhibition between cortical representations of
ideas. Evaluation apprehension can be explained by an inhibitory
connection from the amygdala to the basal ganglia that reduces
the perceived quality of every idea that the brainstormer considers
(i.e., makes the internal critic ‘‘harsher’’), thereby decreasing the
probability that any given idea will be articulated. Our network
model allows for considerable flexibility, including context and



L.R. Iyer et al. / Neural Networks 22 (2009) 674–686 685
mood dependence, in the external influences on the critic’s quality
judgments.
Finally, it is also possible to extend the model to include differ-

ences in semantic organization in the left and right hemispheres,
which have been hypothesized to play a significant role in creative
thinking (Bowden et al., 2005; Duch, 2007; Heilman et al., 2003;
Schilling, 2005).We are currentlyworking on suchmodels for both
individual and group scenarios.
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